20 resultados para SNAREs
Resumo:
The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.
Resumo:
Fusion of post-Golgi secretory vesicles with the plasma membrane in yeast requires the function of a Rab protein, Sec4p, and a set of v- and t-SNAREs, the Snc, Sso, and Sec9 proteins. We have tested the hypothesis that a selective interaction between Sec4p and the exocytic SNAREs is responsible for ensuring that secretory vesicles fuse with the plasma membrane but not with intracellular organelles. Assembly of Sncp and Ssop into a SNARE complex is defective in a sec4-8 mutant strain. However, Snc2p binds in vivo to many other syntaxin-like t-SNAREs, and binding of Sncp to the endosomal/Golgi t-SNARE Tlg2p is also reduced in sec4-8 cells. In addition, binding of Sncp to Ssop is reduced by mutations in two other Rab genes and four non-Rab genes that block the secretory pathway before the formation of secretory vesicles. In an alternate approach to look for selective Rab–SNARE interactions, we report that the nucleotide-free form of Sec4p coimmunoprecipitates with Ssop. However, Rab–SNARE binding is nonselective, because the nucleotide-free forms of six Rab proteins bind with similar low efficiency to three SNARE proteins, Ssop, Pep12p, and Sncp. We conclude that Rabs and SNAREs do not cooperate to specify the target membrane.
Resumo:
In Saccharomyces cerevisiae, clathrin is necessary for localization of trans-Golgi network (TGN) membrane proteins, a process that involves cycling of TGN proteins between the TGN and endosomes. To characterize further TGN protein localization, we applied a screen for mutations that cause severe growth defects in combination with a temperature-sensitive clathrin heavy chain. This screen yielded a mutant allele of RIC1. Cells carrying a deletion of RIC1 (ric1Δ) mislocalize TGN membrane proteins Kex2p and Vps10p to the vacuole. Delivery to the vacuole occurs in ric1Δ cells also harboring end3Δ to block endocytosis, indicative of a defect in retrieval to the TGN rather than sorting to endosomes. SYS1, originally discovered as a multicopy suppressor of defects caused by the absence of the Rab GTPase YPT6, was identified as a multicopy suppressor of ric1Δ. Further comparison of ric1Δ and ypt6Δ cells demonstrated identical phenotypes. Multicopy plasmids expressing v-SNAREs Gos1p or Ykt6p, but not other v- and t-SNAREs, partially suppressed phenotypes of ric1Δ and ypt6Δ cells. SLY1–20, a dominant activator of the cis-Golgi network t-SNARE Sed5p, also functioned as a multicopy suppressor. Because Gos1p and Ykt6p interact with Sed5p, these results raise the possibility that TGN membrane protein localization requires Ric1p- and Ypt6p-dependent retrieval to the cis-Golgi network.
Resumo:
Sed5p is the only syntaxin family member required for protein transport through the yeast Golgi and it is known to bind up to nine other soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins in vivo. We describe in vitro binding experiments in which we identify ternary and quaternary Sed5p-containing SNARE complexes. The formation of SNARE complexes among these endoplasmic reticulum- and Golgi-localized proteins requires Sed5p and is syntaxin-selective. In addition, Sed5p-containing SNARE complexes form selectively and this selectivity is mediated by Sed5p-containing intermediates that discriminate among subsequent binding partners. Although many of these SNAREs have overlapping distributions in vivo, the SNAREs that form complexes with Sed5p in vitro reflect their functionally distinct locales. Although SNARE–SNARE interactions are promiscuous and a single SNARE protein is often found in more than one complex, both the biochemical as well as genetic analyses reported here suggest that this is not a result of nonselective direct substitution of one SNARE for another. Rather our data are consistent with the existence of multiple (perhaps parallel) trafficking pathways where Sed5p-containing SNARE complexes play overlapping and/or distinct functional roles.
Resumo:
We have demonstrated that the plasmalemmal vesicles (caveolae) of the continuous microvascular endothelium function as transcytotic vesicular carriers for protein molecules >20 Å and that transcytosis is an N-ethylmaleimide–sensitive factor (NSF)-dependent, N-ethylmaleimide-sensitive process. We have further investigated NSF interactions with endothelial proteins to find out 1) whether a complete set of fusion and targeting proteins is present in the endothelium; 2) whether they are organized in multimolecular complexes as in neurons; and 3) whether the endothelial multimolecular complexes differ from their neuronal counterparts, because of their specialized role in transcytosis. To generate the complexes, we have used myc-NSF, cultured pulmonary endothelial cells, and rat lung cytosol and membrane preparations; to detect them we have applied coimmunoprecipitation with myc antibodies; and to characterize them we have used velocity sedimentation and cross-linking procedures. We have found that both cytosolic and membrane fractions contain complexes that comprise beside soluble NSF attachment proteins and SNAREs (soluble NSF attachment protein receptor), rab 5, dynamin, caveolin, and lipids. By immunogold labeling and negative staining we have detected in these complexes, myc-NSF, syntaxin, dynamin, caveolin, and endogenous NSF. Similar complexes are formed by endogenous NSF. The results indicate that complexes with a distinct protein–lipid composition exist and suggest that they participate in targeting, fusion, and fission of caveolae with the endothelial plasmalemma.