33 resultados para Reveal
Resumo:
Variations in regulatory regions of developmental control genes have been implicated in the divergence of axial morphologies. To find potentially significant changes in cis-regulatory regions, we compared nucleotide sequences and activities of mammalian Hoxc8 early enhancers. The nucleotide sequence of the early enhancer region is extremely conserved among mammalian clades, with five previously described cis-acting elements, A–E, being invariant. However, a 4-bp deletion within element C of the Hoxc8 early enhancer sequence is observed in baleen whales. When assayed in transgenic mouse embryos, a baleen whale enhancer (unlike other mammalian enhancers) directs expression of the reporter gene to more posterior regions of the neural tube but fails to direct expression to posterior mesoderm. We suggest that regulation of Hoxc8 in baleen whales differs from other mammalian species and may be associated with variation in axial morphology.
Resumo:
In human patients, a wide range of mutations in keratin (K) 5 or K14 lead to the blistering skin disorder epidermolysis bullosa simplex. Given that K14 deficiency does not lead to the ablation of a basal cell cytoskeleton because of a compensatory role of K15, we have investigated the requirement for the keratin cytoskeleton in basal cells by inactivating the K5 gene in mice. We report that the K5−/− mice die shortly after birth, lack keratin filaments in the basal epidermis, and are more severely affected than K14−/− mice. In contrast to the K14−/− mice, we detected a strong induction of the wound-healing keratin K6 in the suprabasal epidermis of cytolyzed areas of postnatal K5−/− mice. In addition, K5 and K14 mice differed with respect to tongue lesions. Moreover, we show that in the absence of K5 and other type II keratins, residual K14 and K15 aggregated along hemidesmosomes, demonstrating that individual keratins without a partner are stable in vivo. Our data indicate that K5 may be the natural partner of K15 and K17. We suggest that K5 null mutations may be lethal in human epidermolysis bullosa simplex patients.
Resumo:
The life history of Candida albicans presents an enigma: this species is thought to be exclusively asexual, yet strains show extensive phenotypic variation. To address the population genetics of C. albicans, we developed a genetic typing method for codominant single-locus markers by screening randomly amplified DNA for single-strand conformation polymorphisms. DNA fragments amplified by arbitrary primers were initially screened for single-strand conformation polymorphisms and later sequenced using locus-specific primers. A total of 12 single base mutations and insertions were detected from six out of eight PCR fragments. Patterns of sequence-level polymorphism observed for individual strains detected considerable heterozygosity at the DNA sequence level, supporting the view that most C. albicans strains are diploid. Population genetic analyses of 52 natural isolates from Duke University Medical Center provide evidence for both clonality and recombination in C. albicans. Evidence for clonality is supported by the presence of several overrepresented genotypes, as well as by deviation of genotypic frequencies from random (Hardy-Weinberg) expectations. However, tests for nonrandom association of alleles across loci reveal less evidence for linkage disequilibrium than expected for strictly clonal populations. Although C. albicans populations are primarily clonal, evidence for recombination suggests that sexual reproduction or some other form of genetic exchange occurs in this species.
Resumo:
An analysis of Y-chromosomal haplotypes in several European populations reveals an almost monomorphic pattern in the Finns, whereas Y-chromosomal diversity is significantly higher in other populations. Furthermore, analyses of nucleotide positions in the mitochondrial control region that evolve slowly show a decrease in genetic diversity in Finns. Thus, relatively few men and women have contributed the genetic lineages that today survive in the Finnish population. This is likely to have caused the so-called "Finnish disease heritage"-i.e., the occurrence of several genetic diseases in the Finnish population that are rare elsewhere. A preliminary analysis of the mitochondrial mutations that have accumulated subsequent to the bottleneck suggests that it occurred about 4000 years ago, presumably when populations using agriculture and animal husbandry arrived in Finland.
Resumo:
Successful cryopreservation of most multicompartmental biological systems has not been achieved. One prerequisite for success is quantitative information on cryoprotectant permeation into and amongst the compartments. This report describes direct measurements of cryoprotectant permeation into a multicompartmental system using chemical shift selective magnetic resonance (MR) microscopy and MR spectroscopy. We used the developing zebrafish embryo as a model for studying these complex systems because these embryos are composed of two membrane-limited compartments: (i) a large yolk (surrounded by the yolk syncytial layer) and (ii) differentiating blastoderm cells (each surrounded by a plasma membrane). MR images of the spatial distribution of three cryoprotectants (dimethyl sulfoxide, propylene glycol, and methanol) demonstrated that methanol permeated the entire embryo within 15 min. In contrast, the other cryoprotectants exhibited little or no permeation over 2.5 h. MR spectroscopy and microinjections of cryoprotectants into the yolk inferred that the yolk syncytial layer plays a critical role in limiting the permeation of some cryoprotectants throughout the embryo. This study demonstrates the power of MR technology combined with micromanipulation for elucidating key physiological factors in cryobiology.
Resumo:
Guanine nucleotide-binding regulatory protein (G protein)-coupled receptor kinases (GRKs) constitute a family of serine/threonine kinases that play a major role in the agonist-induced phosphorylation and desensitization of G-protein-coupled receptors. Herein we describe the generation of monoclonal antibodies (mAbs) that specifically react with GRK2 and GRK3 or with GRK4, GRK5, and GRK6. They are used in several different receptor systems to identify the kinases that are responsible for receptor phosphorylation and desensitization. The ability of these reagents to inhibit GRK- mediated receptor phosphorylation is demonstrated in permeabilized 293 cells that overexpress individual GRKs and the type 1A angiotensin II receptor. We also use this approach to identify the endogenous GRKs that are responsible for the agonist-induced phosphorylation of epitope-tagged beta2- adrenergic receptors (beta2ARs) overexpressed in rabbit ventricular myocytes that are infected with a recombinant adenovirus. In these myocytes, anti-GRK2/3 mAbs inhibit isoproterenol-induced receptor phosphorylation by 77%, while GRK4-6-specific mAbs have no effect. Consistent with the operation of a betaAR kinase-mediated mechanism, GRK2 is identified by immunoblot analysis as well as in a functional assay as the predominant GRK expressed in these cells. Microinjection of GRK2/3-specific mAbs into chicken sensory neurons, which have been shown to express a GRK3-like protein, abolishes desensitization of the alpha2AR-mediated calcium current inhibition. The intracellular inhibition of endogenous GRKs by mAbs represents a novel approach to the study of receptor specificities among GRKs that should be widely applicable to many G-protein-coupled receptors.
Resumo:
Microorganisms play an important role in the biogeochemistry of the ocean surface layer, but spatial and temporal structures in the distributions of specific bacterioplankton species are largely unexplored, with the exceptions of those organisms that can be detected by either autofluorescence or culture methods. The use of rRNA genes as genetic markers provides a tool by which patterns in the growth, distribution, and activity of abundant bacterioplankton species can be studied regardless of the ease with which they can be cultured. Here we report an unusual cluster of related 16S rRNA genes (SAR202, SAR263, SAR279, SAR287, SAR293, SAR307) cloned from seawater collected at 250 m in the Sargasso Sea in August 1991, when the water column was highly stratified and the deep chlorophyll maximum was located at a depth of 120 m. Phylogenetic analysis and an unusual 15-bp deletion confirmed that the genes were related to the Green Non-Sulfur phylum of the domain Bacteria. This is the first evidence that representatives of this phylum occur in the open ocean. Oligonucleotide probes were used to examine the distribution of the SAR202 gene cluster in vertical profiles (0-250 m) from the Atlantic and Pacific Oceans, and in discrete (monthly) time series (O and 200 m) (over 30 consecutive months in the Western Sargasso Sea. The data provide robust statistical support for the conclusion that the SAR202 gene cluster is proportionately most abundant at the lower boundary of the deep chlorophyll maximum (P = 2.33 x 10(-5)). These results suggest that previously unsuspected stratification of microbial populations may be a significant factor in the ecology of the ocean surface layer.
Resumo:
In bilateral animals, the left and right sides of the body usually present asymmetric structures, the genetic bases of whose generation are still largely unknown [CIBA Foundation (1991) Biological Asymmetry and Handedness, CIBA Foundation Symposium 162 (Wiley, New York), pp. 1-327]. In Drosophila melanogaster, mutations in the rotated abdomen (rt) locus cause a clockwise helical rotation of the body. Even null alleles are viable but exhibit defects in embryonic muscle development, rotation of the whole larval body, and helical staggering of cuticular patterns in abdominal segments of the adult. rotated abdomen is expressed in the embryonic mesoderm and midgut but not in the ectoderm; it encodes a putative integral membrane glycoprotein (homologous to key yeast mannosyltransferases). Mesodermal cells defective in O-glycosylation lead to an impaired larval muscular system. We propose that the staggering of the adult abdominal segments would be a consequence of the relaxation of intrinsic rotational torque of muscle architecture, preventing the colateral alignment of the segmental histoblast cells during their proliferation at metamorphosis.
Resumo:
Head trauma leading to concussion and electroconvulsive shock (ECS) in humans causes amnesia for events that occurred shortly before the injury (retrograde amnesia). The present experiment investigated the amnesic effect of lidocaine and ECS in 25 rats trained on a working memory version of the Morris water task. Each day, the escape platform was moved to a new location; learning was evidenced by a decrease in the latency to find the platform from the first to the second trial. "Consolidation" of this newly encoded spatial engram was disrupted by bilateral inactivation of the dorsal hippocampus with 1 microliter of 4% lidocaine applied as soon as possible after the first trial. When trial 2 was given after recovery from the lidocaine (30 min after the injection), a normal decrease in latency indicated that the new engram was not disrupted. When trial 2 was given under the influence of lidocaine (5 min after injection), absence of latency decrease demonstrated both the success of the inactivation and the importance of hippocampus for the task. To examine the role of events immediately after learning, ECS (30 or 100 mA, 50 Hz, 1.2 sec) was applied 0 sec to 45 sec after a single escape to the new platform location. A 2-h delay between ECS and trial 2 allowed the effects of ECS to dissipate. ECS applied 45 sec or 30 sec after trial 1 caused no retrograde amnesia: escape latencies on trial 2 were the same as in control rats. However, ECS applied 0 sec or 15 sec after trial 1 induced clear retrograde amnesia: escape latencies on trial 2 were no shorter than on trial 1. It is concluded that the consolidation of a newly formed memory for spatial location can only be disrupted by ECS within 30 sec after learning.
Resumo:
Chimeric genomes of poliovirus (PV) have been constructed in which the cognate internal ribosomal entry site (IRES) element was replaced by genetic elements of hepatitis C virus (HCV). Replacement of PV IRES with nt 9-332 of the genotype Ib HCV genome, a sequence comprising all but the first eight residues of the 5' nontranslated region (5'NTR) of HCV, resulted in a lethal phenotype. Addition of 366 nt of the HCV core-encoding sequence downstream of the HCV 5'NTR yielded a viable PV/HCV chimera, which expressed a stable, small-plaque phenotype. This chimeric genome encoded a truncated HCV core protein that was fused to the N terminus of the PV polyprotein via an engineered cleavage site for PV proteinase 3CPpro. Manipulation of the HCV core-encoding sequence of this viable chimera by deletion and frameshift yielded results suggesting that the 5'-proximal sequences of the HCV open reading frame were essential for viability of the chimera and that the N-terminal basic region of the HCV core protein is required for efficient replication of the chimeric virus. These data suggest that the bona fide HCV IRES includes genetic information mapping to the 5'NTR and sequences of the HCV open reading frame. PV chimeras replicating under translational control of genetic elements of HCV can serve to study HCV IRES function in vivo and to search for anti-HCV chemotherapeutic agents.
Resumo:
Coccidioides immitis, cause of a recent epidemic of "Valley fever" in California, is typical of many eukaryotic microbes in that mating and meiosis have yet to be reported, but it is not clear whether sex is truly absent or just cryptic. To find out, we have undertaken a population genetic study using PCR amplification, screening for single-strand conformation polymorphisms, and direct DNA sequencing to find molecular markers with nucleotide-level resolution. Both population genetic and phylogenetic analyses indicate that C. immitis is almost completely recombining. To our knowledge, this study is the first to find molecular evidence for recombination in a fungus for which no sexual stage has yet been described. These results motivate a directed search for mating and meiosis and illustrate the utility of single-strand conformation polymorphism and sequencing with arbitrary primer pairs in molecular population genetics.
Resumo:
The immunoglobulin kappa gene locus encodes 95% of the light chains of murine antibody molecules and is thought to contain up to 300 variable (V kappa)-region genes generally considered to comprise 20 families. To delineate the locus we have isolated 29 yeast artificial chromosome genomic clones that form two contigs, span > 3.5 megabases, and contain two known non-immunoglobulin kappa markers. Using PCR primers specific for 19 V kappa gene families and Southern analysis, we have refined the genetically defined order of these V kappa gene families. Of these, V kappa 2 maps at least 3.0 Mb from the joining (J kappa) region and appears to be the most distal V kappa gene segment.
Resumo:
Mutations at position 912 of Escherichia coli 16S rRNA result in two notable phenotypes. The C-->U transition confers resistance to streptomycin, a translational-error-inducing antibiotic, while a C-->G transversion causes marked retardation of cell growth rate. Starting with the slow-growing G912 mutant, random mutagenesis was used to isolate a second site mutation that restored growth nearly to the wild-type rate. The second site mutation was identified as a G-->C transversion at position 885 in 16S rRNA. Cells containing the G912 mutation had an increased doubling time, abnormal sucrose gradient ribosome/subunit profile, increased sensitivity to spectinomycin, dependence upon streptomycin for growth in the presence of spectinomycin, and slower translation rate, whereas cells with the G912/C885 double mutation were similar to wild type in these assays. Comparative analysis showed there was significant covariation between positions 912 and 885. Thus the second-site suppressor analysis, the functional assays, and the comparative data suggest that the interaction between nt 912 and nt 885 is conserved and necessary for normal ribosome function. Furthermore, the comparative data suggest that the interaction extends to include G885-G886-G887 pairing with C912-U911-C910. An alternative secondary structure element for the central domain of 16S rRNA is proposed.