37 resultados para Responsive envelopes
Resumo:
Activation of genes by heavy metals, notably zinc, cadmium and copper, depends on MTF-1, a unique zinc finger transcription factor conserved from insects to human. Knockout of MTF-1 in the mouse results in embryonic lethality due to liver decay, while knockout of its best characterized target genes, the stress-inducible metallothionein genes I and II, is viable, suggesting additional target genes of MTF-1. Here we report on a multi-pronged search for potential target genes of MTF-1, including microarray screening, SABRE selective amplification, a computer search for MREs (DNA-binding sites of MTF-1) and transfection of reporter genes driven by candidate gene promoters. Some new candidate target genes emerged, including those encoding α-fetoprotein, the liver-enriched transcription factor C/EBPα and tear lipocalin/von Ebner’s gland protein, all of which have a role in toxicity/the cell stress response. In contrast, expression of other cell stress-associated genes, such as those for superoxide dismutases, thioredoxin and heat shock proteins, do not appear to be affected by loss of MTF-1. Our experiments have also exposed some problems with target gene searches. First, finding the optimal time window for detecting MTF-1 target genes in a lethal phenotype of rapid liver decay proved problematical: 12.5-day-old mouse embryos (stage E12.5) yielded hardly any differentially expressed genes, whereas at stage 13.0 reduced expression of secretory liver proteins probably reflected the onset of liver decay, i.e. a secondary effect. Likewise, up-regulation of some proliferation-associated genes may also just reflect responses to the concomitant loss of hepatocytes. Another sobering finding concerns γ-glutamylcysteine synthetasehc (γ-GCShc), which controls synthesis of the antioxidant glutathione and which was previously suggested to be a target gene contributing to the lethal phenotype in MTF-1 knockout mice. γ-GCShc mRNA is reduced at the onset of liver decay but MTF-1 null mutant embryos manage to maintain a very high glutathione level until shortly before that stage, perhaps in an attempt to compensate for low expression of metallothioneins, which also have a role as antioxidants.
Resumo:
The chloroplast gene psbD encodes D2, a chlorophyll-binding protein located in the photosystem II reaction center. Transcription of psbD in higher plants involves at least three promoters, one of which is regulated by blue light. The psbD blue-light-regulated promoter (BLRP) consists of a −10 promoter element and an activating complex, AGF, that binds immediately upstream of −35. A second sequence-specific DNA-binding complex, PGTF, binds upstream of AGF between −71 and −100 in the barley (Hordeum vulgare) psbD BLRP. In this study we report that ADP-dependent phosphorylation selectively inhibits the binding of PGTF to the barley psbD BLRP. ATP at high concentrations (1–5 mm) inhibits PGTF binding, but in the presence of phosphocreatine and phosphocreatine kinase, this capacity is lost, presumably due to scavenging of ADP. ADP inhibits PGTF binding at relatively low concentrations (0.1 mm), whereas other nucleotides are unable to mediate this response. ADP-mediated inhibition of PGTF binding is reduced in the presence of the protein kinase inhibitor K252a. This and other results suggest that ADP-dependent phosphorylation of PGTF (or some associated protein) inhibits binding of PGTF to the psbD BLRP and reduces transcription. ADP-dependent phosphorylation is expected to increase in darkness in parallel with the rise in ADP levels in chloroplasts. ADP-dependent phosphorylation in chloroplasts may, therefore, in coordination, inactivate enzymes involved in carbon assimilation, protein synthesis, and transcription during diurnal light/dark cycles.
Resumo:
JC virus is activated to replicate in glial cells of many AIDS patients with neurological disorders. In human glial cells, the human immunodeficiency virus 1 (HIV-1) Tat protein activates the major late promoter of JC virus through a Tat-responsive DNA element, termed upTAR, which is a recognition site for cellular Purα, a sequence-specific single-stranded DNA binding protein implicated in cell cycle control of DNA replication and transcription. Tat interacts with two leucine-rich repeats in Purα to form a complex that can be immunoprecipitated from cell extracts. Tat enhances the ability of purified glutathione S-transferase-Purα (GST-Purα) to bind the upTAR element. Tat acts synergistically with Purα, in a cell-cycle-dependent manner, to activate transcription at an upTAR element placed upstream of a heterologous promoter. Since Purα is ubiquitously expressed in human cells and since PUR elements are located near many promoters and origins of replication, the Tat-Purα interaction may be implicated in effects of HIV-1 throughout the full range of HIV-1-infected cells.
Resumo:
Activation of muscle-specific genes by members of the myocyte enhancer factor 2 (MEF2) and MyoD families of transcription factors is coupled to histone acetylation and is inhibited by class II histone deacetylases (HDACs) 4 and 5, which interact with MEF2. The ability of HDAC4 and -5 to inhibit MEF2 is blocked by phosphorylation of these HDACs at two conserved serine residues, which creates docking sites for the intracellular chaperone protein 14-3-3. When bound to 14-3-3, HDACs are released from MEF2 and transported to the cytoplasm, thereby allowing MEF2 to stimulate muscle-specific gene expression. MEF2-interacting transcription repressor (MITR) shares homology with the amino-terminal regions of HDAC4 and -5, but lacks an HDAC catalytic domain. Despite the absence of intrinsic HDAC activity, MITR acts as a potent inhibitor of MEF2-dependent transcription. Paradoxically, however, MITR has minimal inhibitory effects on the skeletal muscle differentiation program. We show that a substitution mutant of MITR containing alanine in place of two serine residues, Ser-218 and Ser-448, acts as a potent repressor of myogenesis. Our findings indicate that promyogenic signals antagonize the inhibitory action of MITR by targeting these serines for phosphorylation. Phosphorylation of Ser-218 and Ser-448 stimulates binding of 14-3-3 to MITR, disrupts MEF2:MITR interactions, and alters the nuclear distribution of MITR. These results reveal a role for MITR as a signal-dependent regulator of muscle differentiation.
Resumo:
The reduction in levels of the potentially toxic amyloid-β peptide (Aβ) has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the expression and processing of the Aβ precursor protein (βAPP). Earlier reports from our laboratory have shown that a novel cholinesterase inhibitor, phenserine, reduces βAPP levels in vivo. Herein, we studied the mechanism of phenserine's actions to define the regulatory elements in βAPP processing. Phenserine treatment resulted in decreased secretion of soluble βAPP and Aβ into the conditioned media of human neuroblastoma cells without cellular toxicity. The regulation of βAPP protein expression by phenserine was posttranscriptional as it suppressed βAPP protein expression without altering βAPP mRNA levels. However, phenserine's action was neither mediated through classical receptor signaling pathways, involving extracellular signal-regulated kinase or phosphatidylinositol 3-kinase activation, nor was it associated with the anticholinesterase activity of the drug. Furthermore, phenserine reduced expression of a chloramphenicol acetyltransferase reporter fused to the 5′-mRNA leader sequence of βAPP without altering expression of a control chloramphenicol acetyltransferase reporter. These studies suggest that phenserine reduces Aβ levels by regulating βAPP translation via the recently described iron regulatory element in the 5′-untranslated region of βAPP mRNA, which has been shown previously to be up-regulated in the presence of interleukin-1. This study identifies an approach for the regulation of βAPP expression that can result in a substantial reduction in the level of Aβ.
Resumo:
The level of mRNAs derived from the plastid-encoded psbD light-responsive promoter (LRP) is controlled by a circadian clock(s) in wheat (Triticum aestivum). The circadian oscillations in the psbD LRP mRNA level persisted for at least three cycles in continuous light and for one cycle in continuous dark, with maxima in subjective morning and minima in subjective early night. In vitro transcription in chloroplast extracts revealed that the circadian cycles in the psbD LRP mRNA level were dominantly attributed to the circadian-regulated transcription of the psbD LRP. The effects of various mutations introduced into the promoter region on the psbD LRP activity in vitro suggest the existence of two positive elements located between −54 and −36, which generally enhance the transcription activity, and an anomalous core promoter structure lacking the functional “−35” element, which plays a crucial role in the circadian fluctuation and light dependency of psbD LRP transcription activity.
Resumo:
Genomic clones of two nonspecific lipid-transfer protein genes from a drought-tolerant wild species of tomato (Lycopersicon pennellii Corr.) were isolated using as a probe a drought- and abscisic acid (ABA)-induced cDNA clone (pLE16) from cultivated tomato (Lycopersicon esculentum Mill.). Both genes (LpLtp1 and LpLtp2) were sequenced and their corresponding mRNAs were characterized; they are both interrupted by a single intron at identical positions and predict basic proteins of 114 amino acid residues. Genomic Southern data indicated that these genes are members of a small gene family in Lycopersicon spp. The 3′-untranslated regions from LpLtp1 and LpLtp2, as well as a polymerase chain reaction-amplified 3′-untranslated region from pLE16 (cross-hybridizing to a third gene in L. pennellii, namely LpLtp3), were used as gene-specific probes to describe expression in L. pennellii through northern-blot analyses. All LpLtp genes were exclusively expressed in the aerial tissues of the plant and all were drought and ABA inducible. Each gene had a different pattern of expression in fruit, and LpLtp1 and LpLtp2, unlike LpLtp3, were both primarily developmentally regulated in leaf tissue. Putative ABA-responsive elements were found in the proximal promoter regions of LpLtp1 and LpLtp2.
Resumo:
The activation of protein kinases is a frequent response of cells to treatment with growth factors, chemicals, heat shock, or apoptosis-inducing agents. However, when several agents result in the activation of the same enzymes, it is unclear how specific biological responses are generated. We describe here two protein kinases that are activated by a subset of stress conditions or apoptotic agents but are not activated by commonly used mitogenic stimuli. Purification and cloning demonstrate that these protein kinases are members of a subfamily of kinases related to Ste20p, a serine/threonine kinase that functions early in a pheromone responsive signal transduction cascade in yeast. The specificity of Krs-1 and Krs-2 activation and their similarity to Ste20p suggest that they may function at an early step in phosphorylation events that are specific responses to some forms of chemical stress or extreme heat shock.
Resumo:
Early atherosclerotic lesions develop in a topographical pattern that strongly suggests involvement of hemodynamic forces in their pathogenesis. We hypothesized that certain endothelial genes, which exhibit differential responsiveness to distinct fluid mechanical stimuli, may participate in the atherogenic process by modulating, on a local level within the arterial wall, the effects of systemic risk factors. A differential display strategy using cultured human endothelial cells has identified two genes, manganese superoxide dismutase and cyclooxygenase-2, that exhibit selective and sustained up-regulation by steady laminar shear stress (LSS). Turbulent shear stress, a nonlaminar fluid mechanical stimulus, does not induce these genes. The endothelial form of nitric oxide synthase also demonstrates a similar LSS-selective pattern of induction. Thus, three genes with potential atheroprotective (antioxidant, antithrombotic, and antiadhesive) activities manifest a differential response to distinct fluid mechanical stimuli, providing a possible mechanistic link between endothelial gene expression and early events in atherogenesis. The activities of these and other LSS-responsive genes may have important implications for the pathogenesis and prevention of atherosclerosis.
Resumo:
Interaction of the activated insulin receptor (IR) with its substrate, insulin receptor substrate 1 (IRS-1), via the phosphotyrosine binding domain of IRS-1 and the NPXY motif centered at phosphotyrosine 960 of the IR, is important for IRS-1 phosphorylation. We investigated the role of this interaction in the insulin signaling pathway that stimulates glucose transport. Utilizing microinjection of competitive inhibitory reagents in 3T3-L1 adipocytes, we have found that disruption of the IR/IRS-1 interaction has no effect upon translocation of the insulin-responsive glucose transporter (GLUT4). The activity of these reagents was demonstrated by their ability to block insulin stimulation of two distinct insulin bioeffects, membrane ruffling and mitogenesis, in 3T3-L1 adipocytes and insulin-responsive rat 1 fibroblasts. These data suggest that phosphorylated IRS-1 is not an essential component of the metabolic insulin signaling pathway that leads to GLUT4 translocation, yet it appears to be required for other insulin bioeffects.
Resumo:
Study of the mechanism of HIV-1 postintegration latency in the ACH2 cell line demonstrates that these cells failed to increase HIV-1 production following treatment with exogenous Tat. Reasoning that the defect in ACH2 cells involves the Tat response, we analyzed the sequence of tat cDNA and Tat responsive element (TAR) from the virus integrated in ACH2. Tat cDNA sequence is closely related to that of HIV LAI, and the encoded protein is fully functional in terms of long terminal repeat (LTR) transactivation. Cloning of a region corresponding to the 5'-LTR from ACH2, however, identified a point mutation (C37 -> T) in TAR. This mutation impaired Tat responsiveness of the LTR in transient transfection assays, and the measured defect was complemented in cells that had been treated with tetradecanoyl phorbol acetate or tumor necrosis factor type alpha (TNF-alpha). A compensatory mutation in TAR (G28 -> A), designed to reestablish base pairing in the TAR hairpin, restored wild-type Tat responsiveness. When the (C37 -> T) mutation was introduced in an infectious clone of HIV-1, no viral production was measured in the absence of TNF-alpha, whereas full complementation was observed when the infection was conducted in the presence of TNF-alpha or when a compensatory mutation (G28 -> A) was introduced into TAR. These experiments identify a novel mutation associated with HIV-1 latency and suggest that alterations in the Tat-TAR axis can be a crucial determinant of the latent phenotype in infected individuals.
Resumo:
Notch is a transmembrane receptor that plays a critical role in cell fate determination. In Drosophila, Notch binds to and signals through Suppressor of Hairless. A mammalian homologue of Suppressor of Hairless, named CBF1 (or RBPJk), is a ubiquitous transcription factor whose function in mammalian Notch signaling is unknown. To determine whether mammalian Notch can stimulate transcription through a CBF1-responsive element (RE), we cotransfected a CBF1-RE-containing chloramphenicol acetyltransferase reporter and N1(deltaEC), a constitutively active form of human Notch1 lacking the extracellular domain, into DG75, COS-1, HeLa, and 293T cells, which all contain endogenous CBF1. N1(deltaEC) dramatically increased chloramphenicol acetyltransferase activity in these cells, indicating functional coupling of Notch1 and CBF1. The activity was comparable to that produced by the Epstein-Barr virus protein EBNA2, a well-characterized, potent transactivator of CBF1. To test whether CBF1 and Notch1 interact physically, we tagged CBF1 with an epitope from the influenza virus hemagglutinin or with the N-terminal domain of gal4, and transfected the tagged CBF1 plus N1(deltaEC) into COS-1 cells. Cell lysates were immunoprecipitated and immunoblotted with several anti-Notch1 antibodies [to detect N1(deltaEC)] or with antibodies to hemagglutinin or gal4 (to detect CBF1). Each immunoprecipitate contained a complex of N1(deltaEC) and CBF1. In summary, we find that the truncated, active form of human Notch1, N1(deltaEC), binds CBF1 and activates transcription through a CBF1-RE-containing promoter. We conclude that CBF1 is a critical downstream protein in the human Notch1 signaling pathway.
Resumo:
The posttranscriptional control of iron uptake, storage, and utilization by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) provides a molecular framework for the regulation of iron homeostasis in many animals. We have identified and characterized IREs in the mRNAs for two different mitochondrial citric acid cycle enzymes. Drosophila melanogaster IRP binds to an IRE in the 5' untranslated region of the mRNA encoding the iron-sulfur protein (Ip) subunit of succinate dehydrogenase (SDH). This interaction is developmentally regulated during Drosophila embryogenesis. In a cell-free translation system, recombinant IRP-1 imposes highly specific translational repression on a reporter mRNA bearing the SDH IRE, and the translation of SDH-Ip mRNA is iron regulated in D. melanogaster Schneider cells. In mammals, an IRE was identified in the 5' untranslated regions of mitochondrial aconitase mRNAs from two species. Recombinant IRP-1 represses aconitase synthesis with similar efficiency as ferritin IRE-controlled translation. The interaction between mammalian IRPs and the aconitase IRE is regulated by iron, nitric oxide, and oxidative stress (H2O2), indicating that these three signals can control the expression of mitochondrial aconitase mRNA. Our results identify a regulatory link between energy and iron metabolism in vertebrates and invertebrates, and suggest biological functions for the IRE/IRP regulatory system in addition to the maintenance of iron homeostasis.
Resumo:
Rev-erb alpha belongs to the nuclear receptor superfamily, which contains receptors for steroids, thyroid hormones, retinoic acid, and vitamin D, as well as "orphan" receptors. No ligand has been found for Rev-erb alpha to date, making it one of these orphan receptors. Similar to some other orphan receptors, Rev-erb alpha has been shown to bind DNA as a monomer on a specific sequence called a Rev-erb alpah responsive element (RevRE), but its transcriptional activity remains unclear. In this paper, we characterize a functional RevRE located in the human Rev-erb alpha promoter itself. We also present evidence that (i) Rev-erb alpha mediates transcriptional repression of its own promoter in vitro, (ii) this repressing effect strictly depends on the binding of Rev-erb alpha to its responsive element and is transferable to a heterologous promoter; and (iii) Rev-erb alpha binds to this responsive sequence as a homodimer.