24 resultados para Requirements elicitation
Resumo:
During macronuclear development in the ciliated protozoan Tetrahymena thermophila, extensive DNA deletions occur, eliminating thousands of internal eliminated sequences (IESs). Using an rDNA-based transformation assay we have analyzed the role during DNA deletion of DNA flanking mse2.9, an IES within the second intron of a gene encoding an as yet incompletely characterized protein. We establish that a cis-acting sequence for mse2.9 deletion acts at a distance to specify deletion boundaries. A complex sequence element necessary for efficient and accurate mse2.9 deletion is located in the region 47–81 bp from the right side of mse2.9. The ability of a variety of IES flanking sequences to rescue a processing deficient mse2.9 construct indicates that some cis-acting signal is shared among different IESs. In addition, the short intronic sequence that flanks mse2.9 is able to direct efficient and accurate processing. Despite no obvious sequence similarity between mse2.9 and other IESs, we suggest that a common mechanism is used to delete different families of IESs in Tetrahymena.
Resumo:
Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.
Resumo:
Cultured cells of Eschscholtzia californica (Californian poppy) respond to a yeast elicitor preparation or Penicillium cyclopium spores with the production of benzophenanthridine alkaloids, which are potent phytoalexins. Confocal pH mapping with the probe carboxy-seminaphthorhodafluor-1-acetoxymethylester revealed characteristic shifts of the pH distribution in challenged cells: within a few minutes after elicitor contact a transient acidification of cytoplasmic and nuclear areas occurred in parallel with an increase of the vacuolar pH. The change of proton concentration in the vacuole and in the extravacuolar area showed a nearly constant relation, indicating an efflux of vacuolar protons into the cytosol. A 10-min treatment with 2 mm butyric or pivalic acid caused a transient acidification of the cytoplasm comparable to that observed after elicitor contact and also induced alkaloid biosynthesis. Experimental depletion of the vacuolar proton pool reversibly prevented both the elicitor-triggered pH shifts and the induction of alkaloid biosynthesis. pH shifts and induction of alkaloid biosynthesis showed a similar dependence on the elicitor concentration. Net efflux of K+, alkalinization of the outer medium, and browning of the cells were evoked only at higher elicitor concentrations. We suggest that transient acidification of the cytoplasm via efflux of vacuolar protons is both a necessary and sufficient step in the signal path toward biosynthesis of benzophenanthridine alkaloids in Californian poppy cells.
Resumo:
Systemic acquired resistance is an important component of the disease-resistance arsenal of plants, and is associated with an enhanced potency for activating local defense responses upon pathogen attack. Here we demonstrate that pretreatment with benzothiadiazole (BTH), a synthetic activator of acquired resistance in plants, augmented the sensitivity for low-dose elicitation of coumarin phytoalexin secretion by cultured parsley (Petroselinum crispum L.) cells. Enhanced coumarin secretion was associated with potentiated activation of genes encoding Phe ammonia-lyase (PAL). The augmentation of PAL gene induction was proportional to the length of pretreatment with BTH, indicating time-dependent priming of the cells. In contrast to the PAL genes, those for anionic peroxidase were directly induced by BTH in the absence of elicitor, thus confirming a dual role for BTH in the activation of plant defenses. Strikingly, the ability of various chemicals to enhance plant disease resistance correlated with their capability to potentiate parsley PAL gene elicitation, emphasizing an important role for defense response potentiation in acquired plant disease resistance.
Resumo:
The Fc gamma receptor-associated gamma and zeta subunits contain a conserved cytoplasmic motif, termed the immunoglobulin gene tyrosine activation motif, which contains a pair of YXXL sequences. The tyrosine residues within these YXXL sequences have been shown to be required for transduction of a phagocytic signal. We have previously reported that the gamma subunit of the type IIIA Fc gamma receptor (Fc gamma RIIIA) is approximately 6 times more efficient in mediating phagocytosis than the zeta subunit of Fc gamma RIIIA. By exchanging regions of the cytoplasmic domains of the homologous gamma and zeta chains, we observed that the cytoplasmic area of the gamma chain bearing a pair of the conserved YXXL sequences is important in phagocytic signaling. Further specificity of phagocytic signaling is largely determined by the two internal XX amino acids in the YXXL sequences. In contrast, the flanking amino acids of the YXXL sequences including the seven intervening amino acids between the two YXXL sequences do not significantly affect the phagocytic signal. Furthermore, the protein-tyrosine kinase Syk, but not the related kinase ZAP-70, stimulated Fc gamma RIIIA-mediated phagocytosis. ZAP-70, however, increased phagocytosis when coexpressed with the Src family kinase Fyn. These data demonstrate the importance of the two specific amino acids within the gamma subunit YXXL cytoplasmic sequences in phagocytic signaling and explain the difference in phagocytic efficiency of the gamma and zeta chains. These results indicate the importance of Syk in Fc gamma RIIIA-mediated phagocytosis and demonstrate that ZAP-70 and syk differ in their requirement for a Src-related kinase in signal transduction.
Resumo:
Many hormone and cytokine receptors are crosslinked by their specific ligands, and multimerization is an essential step leading to the generation of a signal. In the case of the tumor necrosis factor (TNF) receptors (TNF-Rs), antibody-induced crosslinking is sufficient to trigger a cytolytic effect. However, the quaternary structural requirements for signaling--i.e., the formation of dimers, trimers, or higher-order multimers--have remained obscure. Moreover, it has not been clear whether the 55-kDa or 75-kDa TNF-R is responsible for initiation of cytolysis. We reasoned that an obligate receptor dimer, targeted to the plasma membrane, might continuously signal the presence of TNF despite the actual absence of the ligand. Such a molecule, inserted into an appropriate vector, could be used to project receptor-specific "TNF-like" activity to specific cells and tissues in vivo. Accordingly, we constructed sequences encoding chimeric receptors in which the extracellular domain of the mouse erythropoietin receptor (Epo-R) was fused to the "stem," transmembrane domain, and cytoplasmic domain of the two mouse TNF-Rs. Thus, the Epo-R group was used to drive dimerization of the TNF-R cytoplasmic domain. These chimeric proteins were well expressed in a variety of cell lines and bound erythropoietin at the cell surface. Both the 55-kDa and the 75-kDa Epo/TNF-R chimeras exerted a constitutive cytotoxic effect detected by cotransfection or clonogenic assay. Thus, despite the lack of structural homology between the cytoplasmic domains of the two TNF-Rs, a similar signaling endpoint was observed. Moreover, dimerization (rather than trimerization or higher-order multimerization) was sufficient for elicitation of a biological response.
Resumo:
The oxidative burst is likely the most rapid defense response mounted by a plant under pathogen attack, and the generated oxidant species may be essential to several subsequent defense responses. In our effort to characterize the signal-transduction pathways leading to rapid H2O2/O2- biosynthesis, we have examined the role of protein phosphorylation in this resistance mechanism. K-252a and staurosporine, two protein-kinase inhibitors, were found to block the oxidative burst in a concentration-dependent manner. When added during H2O2 generation, the burst was observed to rapidly terminate, suggesting that continuous phosphorylation was essential for its maintenance. Importantly, phosphatase inhibitors (calyculin A and okadaic acid) were found to induce the oxidative burst in the absence of any additional stimulus. This may suggest that certain kinases required for the burst are constitutively active and that stabilization of the phosphorylated forms of their substrates is all that is required for burst activity. In autoradiographs of elicited and unstimulated cells equilibrated with 32PO4(3-), several phosphorylated polypeptide bands were revealed that could represent proteins essential for the burst.