32 resultados para Reflexive conversion
Resumo:
Two arginine residues, Arg-181 and Arg-268, are conserved throughout the known family of FMN-containing enzymes that catalyze the oxidation of α-hydroxyacids. In the lactate oxidase from Aerococcus viridans, these residues have been changed to lysine in two single mutations and in a double mutant form. In addition, Arg-181 has been replaced by methionine to determine the effect of removing the positive charge on the residue. The effects of these replacements on the kinetic and thermodynamic properties are reported. With all mutant forms, there are only small effects on the reactivity of the reduced flavin with oxygen. On the other hand, the efficiency of reduction of the oxidized flavin by l-lactate is greatly reduced, particularly with the R268K mutant forms. The results demonstrate the importance of the two arginine residues in the binding of substrate and its interaction with the flavin, and are consistent with a previous hypothesis that they also play a role of charge neutralization in the transition state of substrate dehydrogenation. The replacement of Arg-268 by lysine also results in a slow conversion of the 8-CH3- substituent of FMN to yield 8-formyl-FMN, still tightly bound to the enzyme, and with significantly different physical and chemical properties from those of the FMN-enzyme.
Resumo:
Inhibition of cell growth and transformation can be achieved in transformed glial cells by disabling erbB receptor signaling. However, recent evidence indicates that the induction of apoptosis may underlie successful therapy of human cancers. In these studies, we examined whether disabling oncoproteins of the erbB receptor family would sensitize transformed human glial cells to the induction of genomic damage by γ-irradiation. Radioresistant human glioblastoma cells in which erbB receptor signaling was inhibited exhibited increased growth arrest and apoptosis in response to DNA damage. Apoptosis was observed after radiation in human glioma cells containing either a wild-type or mutated p53 gene product and suggested that both p53-dependent and -independent mechanisms may be responsible for the more radiosensitive phenotype. Because cells exhibiting increased radiation-induced apoptosis were also capable of growth arrest in serum-deprived conditions and in response to DNA damage, apoptotic cell death was not induced simply as a result of impaired growth arrest pathways. Notably, inhibition of erbB signaling was a more potent stimulus for the induction of apoptosis than prolonged serum deprivation. Proximal receptor interactions between erbB receptor members thus influence cell cycle checkpoint pathways activated in response to DNA damage. Disabling erbB receptors may improve the response to γ-irradiation and other cytotoxic therapies, and this approach suggests that present anticancer strategies could be optimized.
Resumo:
Transmissible spongiform encephalopathies (TSEs) are lethal, infectious disorders of the mammalian nervous system. A TSE hallmark is the conversion of the cellular protein PrPC to disease-associated PrPSc (named for scrapie, the first known TSE). PrPC is protease-sensitive, monomeric, detergent soluble, and primarily α-helical; PrPSc is protease-resistant, polymerized, detergent insoluble, and rich in β-sheet. The “protein-only” hypothesis posits that PrPSc is the infectious TSE agent that directly converts host-encoded PrPC to fresh PrPSc, harming neurons and creating new agents of infection. To gain insight on the conformational transitions of PrP, we tested the ability of several protein chaperones, which supervise the conformational transitions of proteins in diverse ways, to affect conversion of PrPC to its protease-resistant state. None affected conversion in the absence of pre-existing PrPSc. In its presence, only two, GroEL and Hsp104 (heat shock protein 104), significantly affected conversion. Both promoted it, but the reaction characteristics of conversions with the two chaperones were distinct. In contrast, chemical chaperones inhibited conversion. Our findings provide new mechanistic insights into nature of PrP conversions, and provide a new set of tools for studying the process underlying TSE pathogenesis.
Resumo:
Squalene epoxidase, a membrane-associated enzyme that converts squalene to squalene 2,3-oxide, plays an important role in the maintenance of cholesterol homeostasis. In 1957, Bloch and colleagues identified a factor from rat liver cytosol termed “supernatant protein factor (SPF),” which promotes the squalene epoxidation catalyzed by rat liver microsomes with oxygen, NADPH, FAD, and phospholipid [Tchen, T. T. & Bloch, K. (1957) J. Biol. Chem. 226, 921–930]. Although purification of SPF by 11,000-fold was reported, no information is so far available on the primary structure or biological function of SPF. Here we report the cDNA cloning and expression of SPF from rat and human. The encoded protein of 403 amino acids belongs to a family of cytosolic lipid-binding/transfer proteins such as α-tocopherol transfer protein, cellular retinal binding protein, yeast phosphatidylinositol transfer protein (Sec14p), and squid retinal binding protein. Recombinant SPF produced in Escherichia coli enhances microsomal squalene epoxidase activity and promotes intermembrane transfer of squalene in vitro. SPF mRNA is expressed abundantly in the liver and small intestine, both of which are important sites of cholesterol biosynthesis. SPF is expressed significantly in isolated hepatocytes, but the expression level was markedly decreased after 48 h of in vitro culture. Moreover, SPF was not detectable in most of the cell lines tested, including HepG2 and McARH7777 hepatomas. Transfection of SPF cDNA in McARH7777 significantly stimulated de novo cholesterol biosynthesis. These data suggest that SPF is a cytosolic squalene transfer protein capable of regulating cholesterol biosynthesis.
Resumo:
Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.
Resumo:
Under certain conditions, the prion protein (PrP) undergoes a conformational change from the normal cellular isoform, PrPC, to PrPSc, an infectious isoform capable of causing neurodegenerative diseases in many mammals. Conversion can be triggered by low pH, and in vivo this appears to take place in an endocytic pathway and/or caveolae-like domains. It has thus far been impossible to characterize the conformational change at high resolution by experimental methods. Therefore, to investigate the effect of acidic pH on PrP conformation, we have performed 10-ns molecular dynamics simulations of PrPC in water at neutral and low pH. The core of the protein is well maintained at neutral pH. At low pH, however, the protein is more dynamic, and the sheet-like structure increases both by lengthening of the native β-sheet and by addition of a portion of the N terminus to widen the sheet by another two strands. The side chain of Met-129, a polymorphic codon in humans associated with variant Creutzfeldt–Jakob disease, pulls the N terminus into the sheet. Neutralization of Asp-178 at low pH removes interactions that inhibit conversion, which is consistent with the Asp-178–Asn mutation causing human prion diseases.
Resumo:
The effects of testosterone on early atherogenesis and the role of aromatase, an enzyme that converts testosterone to estrogens, were assessed in low density lipoprotein receptor-deficient male mice fed a Western diet. Castration of male mice increased the extent of fatty streak lesion formation in the aortic origin compared with testes-intact animals. Administration of anastrazole, a selective aromatase inhibitor, to testes-intact males increased lesion formation to the same extent as that observed with orchidectomized animals. Testosterone supplementation of orchidectomized animals reduced lesion formation when compared with orchidectomized animals receiving the placebo. This attenuating effect of testosterone was not observed when the animals were treated simultaneously with the aromatase inhibitor. The beneficial effects of testosterone on early atherogenesis were not explained by changes in lipid levels. Estradiol administration to orchidectomized males attenuated lesion formation to the same extent as testosterone administration. Aromatase was expressed in the aorta of these animals as assessed by reverse transcription–PCR and immunohistochemistry. These results indicate that testosterone attenuates early atherogenesis most likely by being converted to estrogens by the enzyme aromatase expressed in the vessel wall.
Resumo:
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22α-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.
Resumo:
We have demonstrated that it is possible to radically change the specificity of maltose binding protein by converting it into a zinc sensor using a rational design approach. In this new molecular sensor, zinc binding is transduced into a readily detected fluorescence signal by use of an engineered conformational coupling mechanism linking ligand binding to reporter group response. An iterative progressive design strategy led to the construction of variants with increased zinc affinity by combining binding sites, optimizing the primary coordination sphere, and exploiting conformational equilibria. Intermediates in the design series show that the adaptive process involves both introduction and optimization of new functions and removal of adverse vestigial interactions. The latter demonstrates the importance of the rational design approach in uncovering cryptic phenomena in protein function, which cannot be revealed by the study of naturally evolved systems.
Resumo:
A 16-amino acid oligopeptide forms a stable β-sheet structure in water. In physiological solutions it is able to self-assemble to form a macroscopic matrix that stains with Congo red. On raising the temperature of the aqueous solution above 70°C, an abrupt structural transition occurs in the CD spectra from a β-sheet to a stable α-helix without a detectable random-coil intermediate. With cooling, it retained the α-helical form and took several weeks at room temperature to partially return to the β-sheet form. Slow formation of the stable β-sheet structure thus shows kinetic irreversibility. Such a formation of very stable β-sheet structures is found in the amyloid of a number of neurological diseases. This oligopeptide could be a model system for studying the protein conformational changes that occurs in scrapie or Alzheimer disease. The abrupt and direct conversion from a β-sheet to an α-helix may also be found in other processes, such as protein folding and protein–protein interaction. Furthermore, such drastic structure changes may also be exploited in biomaterials designed as sensors to detect environmental changes.
Resumo:
A general method is described for constructing a helical oligoproline assembly having a spatially ordered array of functional sites protruding from a proline-II helix. Three different redox-active carboxylic acids were coupled to the side chain of cis-4-amino-L-proline. These redox modules were incorporated through solid-phase peptide synthesis into a 13-residue helical oligoproline assembly bearing in linear array a phenothiazine electron donor, a tris(bipyridine)ruthenium(II) chromophore, and an anthraquinone electron acceptor. Upon transient 460-nm irradiation in acetonitrile, this peptide triad formed with 53% efficiency an excited state containing a phenothiazine radical cation and an anthraquinone radical anion. This light-induced redox-separated state had a lifetime of 175 ns and stored 1.65 eV of energy.
Resumo:
Two structurally unrelated chemicals, aflatoxin B1 and propane sultone, transformed human foreskin cells to a stage of anchorage-independent growth. Isolation from agar and repopulation in monolayer culture of these transformed cells was followed by transfection with a cDNA library, which resulted in cells that exhibited an altered epithelioid morphology. Chemically transformed/nontransfected cells and transfected normal cells did not undergo a significant morphological change. These epithelioid-appearing, transfected cells, when inoculated into nude mice, form progressively growing tumors. The tumors are histopathologically interpreted as carcinomas. All of the first generation tumors in the surrogate hosts exhibited characteristic rates of growth similar to those of transplants of spontaneous human tumors. In the second generation of tumor xenografts, the progressively growing tumors derived from the transfected cells exhibited a more rapid rate of growth. Southern analysis and reverse transcription PCR confirmed that a 1.3-kb genetic element was integrated into the genome and was actively being transcribed. Examination of the metaphase chromosomes in normal human cells revealed that the genetic element responsible for this conversion was located at site 31-32 of the q arm of chromosome 7. The DNA sequence of this 1.3-kb genetic element contains a coding region for 79 amino acids and a long 3'-untranslated region and appears to be identical to CATR1.3 isolated from tumors produced by methyl methanesulfonate-converted, nontransplantable human tumor cells.
Resumo:
Ca2+ influx controls multiple neuronal functions including neurotransmitter release, protein phosphorylation, gene expression, and synaptic plasticity. Brain L-type Ca2+ channels, which contain either alpha 1C or alpha 1D as their pore-forming subunits, are an important source of calcium entry into neurons. Alpha 1C exists in long and short forms, which are differentially phosphorylated, and C-terminal truncation of alpha 1C increases its activity approximately 4-fold in heterologous expression systems. Although most L-type calcium channels in brain are localized in the cell body and proximal dendrites, alpha 1C subunits in the hippocampus are also present in clusters along the dendrites of neurons. Examination by electron microscopy shows that these clusters of alpha 1C are localized in the postsynaptic membrane of excitatory synapses, which are known to contain glutamate receptors. Activation of N-methyl-D-aspartate (NMDA)-specific glutamate receptors induced the conversion of the long form of alpha 1C into the short form by proteolytic removal of the C terminus. Other classes of Ca2+ channel alpha1 subunits were unaffected. This proteolytic processing reaction required extracellular calcium and was blocked by inhibitors of the calcium-activated protease calpain, indicating that calcium entry through NMDA receptors activated proteolysis of alpha1C by calpain. Purified calpain catalyzed conversion of the long form of immunopurified alpha 1C to the short form in vitro, consistent with the hypothesis that calpain is responsible for processing of alpha 1C in hippocampal neurons. Our results suggest that NMDA receptor-induced processing of the postsynaptic class C L-type Ca2+ channel may persistently increase Ca2+ influx following intense synaptic activity and may influence Ca2+-dependent processes such as protein phosphorylation, synaptic plasticity, and gene expression.
Resumo:
A convenient, high yield conversion of doxorubicin to 3'-deamino-3'-(2''-pyrroline-1''-yl)doxorubicin is described. This daunosamine-modified analog of doxorubicin is 500-1000 times more active in vitro than doxorubicin. The conversion is effected by using a 30-fold excess of 4-iodobutyraldehyde in anhydrous dimethylformamide. The yield is higher than 85%. A homolog of this compound, 3'-deamino-3'-(1'',3''-tetrahydropyridine-1''-yl)doxorubicin, was also synthesized by using 5-iodovaleraldehyde. In this homolog, the daunosamine nitrogen is incorporated into a six- instead of a five-membered ring. This analog was 30-50 times less active than its counterpart with a five-membered ring. A similar structure-activity relationship was found when 3'-deamino-3'-(3''-pyrrolidone-1''-yl)doxorubicin (containing a five-membered ring) and 3'-deamino-3'-(3''-piperidone-1''-yl)doxorubicin (with a six-membered ring) were tested in vitro, the former being 5 times more potent than the latter. To further elucidate structure-activity relationships, 3'-deamino-3'-(pyrrolidine-1''-yl)doxorubicin, 3'-deamino-3'-(isoindoline-2''-yl)doxorubicin, 3'-deamino-3'-(2''-methyl-2''-pyrroline-1''-yl)doxorubicin, and 3'-deamino-3'-(3''-pyrroline-1''-yl)doxorubicin were also synthesized and tested. All the analogs were prepared by using reactive halogen compounds for incorporating the daunosamine nitrogen of doxorubicin into a five- or six-membered ring. These highly active antineoplastic agents can be used for incorporation into targeted cytotoxic analogs of luteinizing hormone-releasing hormone intended for cancer therapy.
Resumo:
The epithelial-specific integrin alpha 6 beta 4 is suprabasally expressed in benign skin tumors (papillomas) and is diffusely expressed in carcinomas associated with an increase in the proliferating compartment. Analysis of RNA samples by reverse transcriptase-PCR and DNA sequencing revealed that chemically or oncogenically induced papillomas (n = 8) expressed a single transcript of the alpha 6 subunit, identified as the alpha 6 A splice variant. In contrast, carcinomas (n = 13) expressed both alpha 6A and an alternatively spliced form, alpha 6B. Primary keratinocytes and a number of keratinocyte cell lines that vary in biological potential from normal skin, to benign papillomas, to well-differentiated slowly growing carcinomas exclusively expressed alpha 6A. However, I7, an oncogene-induced cell line that produces highly invasive carcinomas, expressed both alpha 6A and alpha 6B transcript and protein. The expression of alpha 6B in I7 cells was associated with increased attachment to a laminin matrix compared to cell lines exclusively expressing alpha 6A. Furthermore, introduction of an alpha 6B expression vector into a papilloma cell line expressing alpha 6A increased laminin attachment. When a papilloma cell line was converted to an invasive carcinoma by introduction of the v-fos oncogene, the malignant cells expressed both alpha 6A and alpha 6B, while the parent cell line and cells transduced with v-jun or c-myc, which retained the papilloma phenotype, expressed only alpha 6A. Comparative analysis of alpha 6B expression in cell lines and their derived tumors indicate that alpha 6B transcripts are more abundant in tumors than cell lines, and alpha 6B is expressed to a greater extent in poorly differentiated tumors. These results establish a link between malignant conversion and invasion of squamous tumor cells and the regulation of transcript processing of the alpha 6 beta 4 integrin.