22 resultados para Reduction of losses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleotide sequences were determined for the gamma1- and gamma2-globin loci from representatives of the seven anciently separated clades in the three extant platyrrhine families (Atelidae, Pitheciidae, and Cebidae). These sequences revealed an evolutionary trend in New World monkeys either to inactivate the gamma1 gene or to fuse it with the gamma2 gene, i.e. to have only one functional fetally expressed gamma gene. This trend is clearly evident in six of the seven clades: (i) it occurred in atelids by deletion of most of the gamma1 gene in the basal ancestor of this clade; (ii-iv) in pitheciid titi, saki, and cebid capuchin monkeys by potentially debilitating nucleotide substitutions in the proximal CCAAT box of the gamma1 promoters and (v and vi) in cebid owl and squirrel monkeys by crossovers that fused 5' sequence from gamma1 with 3' sequence from gamma2. In the five clades with gamma1 and gamma2 loci separated by intergenic sequences (the fifth clade being the cebid marmosets), the gamma2 genes retained an unaltered proximal CCAAT motif and their gamma2 promoters accumulated fewer nucleotide substitutions than did the gamma1 promoters. Thus, phylogenetic considerations indicate that the stem platyrrhines, ancestral to all New World monkeys, had gamma2 as the primary fetally expressed gamma gene. A further inference is that when the earlier stem anthropoid gamma gene duplicated, gamma2 (at its greater downstream distance from epsilon) could evade embryonic activation by the locus control region but could be fetally activated once released by regulatory mutations from fetal repressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic mice carrying a bovine alpha-lactalbumin (alpha-lac) specific ribozyme gene under the transcriptional control of the mouse mammary tumor virus long terminal repeat were generated and cross-bred with animals that highly express a bovine alpha-lac transgene (0.4 mg of alpha-lac/ml(-1) of milk). The ribozyme contains the hammerhead catalytic domain, flanked by 12-nt sequences complementary to the 3' untranslated region of bovine alpha-lac transcript. High-level expression of the ribozyme gene was detected by Northern blot analysis in the mammary gland of 7-8 day lactating transgenic mice, from 3 of 12 lines analyzed. Heterozygous expression of the ribozyme resulted in a reduction in the levels of the target mRNA to 78, 58, and 50% of that observed in the nonribozyme transgenic littermate controls for three independent lines. The ribozyme-mediated reduction in the levels of the bovine protein paralleled that observed for the mRNA, and was positively correlated with the level of expression of the ribozyme. In nonribozyme expressing transgenic mice, the level of bovine alpha-lac mRNA and protein was not affected. The specificity of this activity is demonstrated by the absence of a reduction in the levels of the endogenous murine alpha-lac mRNA or protein. These results demonstrate the feasibility of ribozyme-mediated down-regulation of highly-expressed transcripts in transgenic animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enzyme that reduces methionine sulfoxide [Met(O)] residues in proteins [peptide Met(O) reductase (MsrA), EC 1.8.4.6; originally identified in Escherichia coli] was purified from bovine liver, and the cDNA encoding this enzyme was cloned and sequenced. The mammalian homologue of E. coli msrA (also called pmsR) cDNA encodes a protein of 255 amino acids with a calculated molecular mass of 25,846 Da. This protein has 61% identity with the E. coli MsrA throughout a region encompassing a 199-amino acid overlap. The protein has been overexpressed in E. coli and purified to homogeneity. The mammalian recombinant MsrA can use as substrate, proteins containing Met(O) as well as other organic compounds that contain an alkyl sulfoxide group such as N-acetylMet(O), Met(O), and dimethyl sulfoxide. Northern analysis of rat tissue extracts showed that rat msrA mRNA is present in a variety of organs with the highest level found in kidney. This is consistent with the observation that kidney extracts also contained the highest level of enzyme activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulation of ion channel function by intracellular processes is fundamental for controlling synaptic signaling and integration in the nervous system. Currents mediated by N-methyl-D-aspartate (NMDA) receptors decline during whole-cell recordings and this may be prevented by ATP. We show here that phosphorylation is necessary to maintain NMDA currents and that the decline is not dependent upon Ca2+. A protein tyrosine phosphatase or a peptide inhibitor of protein tyrosine kinase applied intracellularly caused a decrease in NMDA currents even when ATP was included. On the other hand, pretreating the neurons with a membrane-permeant tyrosine kinase inhibitor occluded the decline in NMDA currents when ATP was omitted. In inside-out patches, applying a protein tyrosine phosphatase to the cytoplasmic face of the patch caused a decrease in probability of opening of NMDA channels. Conversely, open probability was increased by a protein tyrosine phosphatase inhibitor. These results indicate that NMDA channel activity is reduced by a protein tyrosine phosphatase associated with the channel complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic exposure of HIT-T15 beta cells to elevated glucose concentrations leads to decreased insulin gene transcription. The reduction in expression is accompanied by diminished binding of a glucose-sensitive transcription factor (termed GSTF) that interacts with two (A+T)-rich elements within the 5' flanking control region of the insulin gene. In this study we examined whether GSTF corresponds to the recently cloned insulin gene transcription factor STF-1, a homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and pancreas. We found that an affinity-purified antibody recognizing STF-1 supershifted the GSTF activator complex formed from HIT-T15 extracts. In addition, we demonstrated a reduction in STF-1 mRNA and protein levels that closely correlated with the change in GSTF binding in HIT-T15 cells chronically cultured under supraphysiologic glucose concentrations. The reduction in STF-1 expression in these cells could be accounted for by a change in the rate of STF-1 gene transcription, suggesting a posttranscriptional control mechanism. In support of this hypothesis, no STF-1 mRNA accumulated in HIT-T15 cells passaged in 11.1 mM glucose. The only RNA species detected was a 6.4-kb STF-1 RNA species that hybridized with 5' and 3' STF-1-specific cDNA probes. We suggest that the 6.4-kb RNA represents an STF-1 mRNA precursor and that splicing of this RNA is defective in these cells. Overall, this study suggests that reduced expression of a key transcriptional regulatory factor, STF-1, contributes to the decrease in insulin gene transcription in HIT-T15 cells chronically cultured in supraphysiologic glucose concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation of amino acid residues in proteins can be caused by a variety of oxidizing agents normally produced by cells. The oxidation of methionine in proteins to methionine sulfoxide is implicated in aging as well as in pathological conditions, and it is a reversible reaction mediated by a ubiquitous enzyme, peptide methionine sulfoxide reductase. The reversibility of methionine oxidation suggests that it could act as a cellular regulatory mechanism although no such in vivo activity has been demonstrated. We show here that oxidation of a methionine residue in a voltage-dependent potassium channel modulates its inactivation. When this methionine residue is oxidized to methionine sulfoxide, the inactivation is disrupted, and it is reversed by coexpression with peptide methionine sulfoxide reductase. The results suggest that oxidation and reduction of methionine could play a dynamic role in the cellular signal transduction process in a variety of systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperacute rejection of pig organs by humans involves the interaction of Galα(1,3)Gal with antibodies and complement. Strategies to reduce the amount of xenoantigen Galα(1,3)Gal were investigated by overexpression of human lysosomal α-galactosidase in cultured porcine cells and transgenic mice. The overexpression of human α-galactosidase in cultured porcine endothelial cells and COS cells resulted in a 30-fold reduction of cell surface Galα(1,3)Gal and a 10-fold reduction in cell reactivity with natural human antibodies. Splenocytes from transgenic mice overexpressing human α-galactosidase showed only a 15–25% reduction in binding to natural human anti-Galα(1,3)Gal antibodies; however, this decrease was functionally significant as demonstrated by reduced susceptibility to human antibody-mediated lysis. However, because there is residual Galα(1,3)Gal and degalactosylation results in the exposure of N-acetyllactosamine residues and potential new xenoepitopes, using α-galactosidase alone is unlikely to overcome hyperacute rejection. We previously reported that mice overexpressing human α1,2-fucosyltransferase as a transgene had ≈90% reduced Galα(1,3)Gal levels due to masking of the xenoantigen by fucosylation; we evaluated the effect of overexpressing α-galactosidase and α1,2-fucosyltransferase on Galα(1,3)Gal levels. Galα(1,3)Gal-positive COS cells expressing α1,3-galactosyltransferase, α1,2-fucosyltransferase, and α-galactosidase showed negligible cell surface staining and were not susceptible to lysis by human serum containing antibody and complement. Thus, α1,2-fucosyltransferase and α-galactosidase effectively reduced the expression of Galα(1,3)Gal on the cell surface and could be used to produce transgenic pigs with negligible levels of cell surface Galα(1,3)Gal, thereby having no reactivity with human serum and improving graft survival.