144 resultados para Rectifying Chloride Channels


Relevância:

90.00% 90.00%

Publicador:

Resumo:

CD95/Fas/APO-1 mediated apoptosis is an important mechanism in the regulation of the immune response. Here, we show that CD95 receptor triggering activates an outwardly rectifying chloride channel (ORCC) in Jurkat T lymphocytes. Ceramide, a lipid metabolite synthesized upon CD95 receptor triggering, also induces activation of ORCC in cell-attached patch clamp experiments. Activation is mediated by Src-like tyrosine kinases, because it is abolished by the tyrosine kinase inhibitor herbimycin A or by genetic deficiency of p56lck. In vitro incubation of excised patches with purified p56lck results in activation of ORCC, which is partially reversed upon addition of anti-phosphotyrosine antibody. Inhibition of ORCC by four different drugs correlates with a 30–65% inhibition of apoptosis. Intracellular acidification observed upon CD95 triggering is abolished by inhibition of either ORCC or p56lck. The results suggest that tyrosine kinase-mediated activation of ORCC may play a role in CD95-induced cell death in T lymphocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significantly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Application of L-glutamate to retinal glial (Müller) cells results in an inwardly rectifying current due to the net influx of one positive charge per molecule of glutamate transported into the cell. However, at positive potentials an outward current can be elicited by glutamate. This outward current is eliminated by removal of external chloride ions. Substitution of external chloride with the anions thiocyanate, perchlorate, nitrate, and iodide, which are known to be more permeant at other chloride channels, results in a considerably larger glutamate-elicited outward current at positive potentials. The large outward current in external nitrate has the same ionic dependence, apparent affinity for L-glutamate, and pharmacology as the glutamate transporter previously reported to exist in these cells. Varying the concentration of external nitrate shifts the reversal potential in a manner consistent with a conductance permeable to nitrate. Together, these results suggest that the glutamate transporter in retinal glial cells is associated with an anionic conductance. This anionic conductance may be important for preventing a reduction in the rate of transport due the depolarization that would otherwise occur as a result of electrogenic glutamate uptake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abscisic acid (ABA) modulates the activities of three major classes of ion channels--inward- and outward-rectifying K+ channels (IK,in and IK,out, respectively) and anion channels--at the guard-cell plasma membrane to achieve a net efflux of osmotica and stomatal closure. Disruption of ABA sensitivity in wilty abi1-1 mutants of Arabidopsis and evidence that this gene encodes a protein phosphatase suggest that protein (de)-phosphorylation contributes to guard-cell transport control by ABA. To pinpoint the role of ABI1, the abi1-1 dominant mutant allele was stably transformed into Nicotiana benthamiana and its influence on IK,in, IK,out, and the anion channels was monitored in guard cells under voltage clamp. Compared with guard cells from wild-type and vector-transformed control plants, expression of the abi1-1 gene was associated with 2- to 6-fold reductions in IK,out and an insensitivity of both IK,in and IK,out to 20 microM ABA. In contrast, no differences between control and abi1-1 transgenic plants were observed in the anion current or its response to ABA. Parallel measurements of intracellular pH (pHi) using the fluorescent dye 2',7'-bis(2-carboxyethyl)-5-(and -6)-carboxyfluorescein (BCECF) in every case showed a 0.15- to 0.2-pH-unit alkalinization in ABA, demonstrating that the transgene was without effect on the pHi signal that mediates in ABA-evoked K+ channel control. In guard cells from the abi1-1 transformants, normal sensitivity of both K+ channels to and stomatal closure in ABA was recovered in the presence of 100 microM H7 and 0.5 microM staurosporine, both broad-range protein kinase antagonists. These results demonstrate an aberrant K+ channel behavior--including channel insensitivity to ABA-dependent alkalinization of pHi--as a major consequence of abi1-1 action and implicate AB11 as part of a phosphatase/kinase pathway that modulates the sensitivity of guard-cell K+ channels to ABA-evoked signal cascades.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cystic fibrosis (CF), a disorder of electrolyte transport manifest in the lungs, pancreas, sweat duct, and vas deferens, is caused by mutations in the CF transmembrane conductance regulator (CFTR). The CFTR protein has been shown to function as a cAMP-activated chloride channel and also regulates a separate protein, the outwardly rectifying chloride channel (ORCC). To determine the consequence of disease-producing mutations upon these functions, mutant CFTR was transiently expressed in Xenopus oocytes and in human airway epithelial cells lacking functional CFTR. Both G551D, a mutation that causes severe lung disease, and A455E, a mutation associated with mild lung disease, altered but did not abolish CFTR's function as a chloride channel in Xenopus oocytes. Airway epithelial cells transfected with CFTR bearing either A455E or G551D had levels of chloride conductance significantly greater than those of mock-transfected and lower than those of wild-type CFTR-transfected cells, as measured by chloride efflux. A combination of channel blockers and analysis of current-voltage relationships were used to dissect the contribution of CFTR and the ORCC to whole cell currents of transfected cells. While CFTR bearing either mutation could function as a chloride channel, only CFTR bearing A455E retained the function of regulating the ORCC. These results indicate that CF mutations can affect CFTR functions differently and suggest that severity of pulmonary disease may be more closely associated with the regulatory rather than chloride channel function of CFTR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

γ-Aminobutyric acid type A receptors (GABAARs) are ligand-gated chloride channels that exist in numerous distinct subunit combinations. At postsynaptic membrane specializations, different GABAAR isoforms colocalize with the tubulin-binding protein gephyrin. However, direct interactions of GABAAR subunits with gephyrin have not been reported. Recently, the GABAAR-associated protein GABARAP was found to bind to the γ2 subunit of GABAARs. Here we show that GABARAP interacts with gephyrin in both biochemical assays and transfected cells. Confocal analysis of neurons derived from wild-type and gephyrin-knockout mice revealed that GABARAP is highly enriched in intracellular compartments, but not at gephyrin-positive postsynaptic membrane specializations. Our data indicate that GABARAP–gephyrin interactions are not important for postsynaptic GABAAR anchoring but may be implicated in receptor sorting and/or targeting mechanisms. Consistent with this idea, a close homolog of GABARAP, p16, has been found to function as a late-acting intra-Golgi transport factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The functional characteristics and cellular localization of the γaminobutyric acid (GABA) ρ1 receptor and its nonfunctional isoform ρ1Δ450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with ρ1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type ρ1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, ρ1Δ450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing ρ1Δ450-GFP was distributed similarly to that of ρ1-GFP. Mammalian cells transfected with the ρ1-GFP or ρ1Δ450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that ρ1Δ450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, ρ1- and ρ1Δ450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is generally accepted that K+ uptake into guard cells via inward-rectifying K+ channels is required for stomatal opening. To test whether the guard cell K+ channel KAT1 is essential for stomatal opening, a knockout mutant, KAT1∷En-1, was isolated from an En-1 mutagenized Arabidopsis thaliana population. Stomatal action and K+ uptake, however, were not impaired in KAT1-deficient plants. Reverse transcription–PCR experiments with isolated guard cell protoplasts showed that in addition to KAT1, the K+ channels AKT1, AKT2/3, AtKC1, and KAT2 were expressed in this cell type. In impalement measurements, intact guard cells exhibited inward-rectifying K+ currents across the plasma membrane of both wild-type and KAT1∷En-1 plants. This study demonstrates that multiple K+ channel transcripts exist in guard cells and that KAT1 is not essential for stomatal action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extracts of Ginkgo biloba leaves are consumed as dietary supplements to counteract chronic, age-related neurological disorders. We have applied high-density oligonucleotide microarrays to define the transcriptional effects in the cortex and hippocampus of mice whose diets were supplemented with the herbal extract. Gene expression analysis focused on the mRNAs that showed a more than 3-fold change in their expression. In the cortex, mRNAs for neuronal tyrosine/threonine phosphatase 1, and microtubule-associated τ were significantly enhanced. Hyperphosphorylated τ is the major constituent of the neurofibrillary tangles in the brains of Alzheimer's disease patients. The expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-2, calcium and chloride channels, prolactin, and growth hormone (GH), all of which are associated with brain function, were also up-regulated. In the hippocampus, only transthyretin mRNA was upregulated. Transthyretin plays a role in hormone transport in the brain and possibly a neuroprotective role by amyloid-β sequestration. This study reveals that diets supplemented with Ginkgo biloba extract have notable neuromodulatory effects in vivo and illustrates the utility of genome-wide expression monitoring to investigate the biological actions of complex extracts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS)-containing neurons, termed NOergic neurons, occur in various regions of the hypothalamus, including the median eminence-arcuate region, which plays an important role in controlling the release of luteinzing hormone-releasing hormone (LHRH). We examined the effect of NO on release of gamma-aminobutyric acid (GABA) from medial basal hypothalamic (MBH) explants incubated in vitro. Sodium nitroprusside (NP) (300 microM), a spontaneous releaser of NO, doubled the release of GABA. This release was significantly reduced by incubation of the tissue with hemoglobin, a scavenger of NO, whereas hemoglobin alone had no effect on the basal release of GABA. Elevation of the potassium concentration (40 mM) in the medium increased GABA release 15-fold; this release was further augmented by NP. Hemoglobin blocked the increase in GABA release induced by NP but had no effect on potassium-induced release, suggesting that the latter is not related to NO. As in the case of hemoglobin, NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, had no effect on basal release of GABA, which indicates again that NO is not significant to basal GABA release. However, NMMA markedly inhibited the release of GABA induced by high potassium, which indicates that NO plays a role in potassium-induced release of GABA. In conditions in which the release of GABA was substantially augmented, there was a reduction in GABA tissue stores as well, suggesting that synthesis of GABA in these conditions did not keep up with release of the amine. Although NO released GABA, there was no effect of the released GABA on NO production, for incubation of MBH explants with GABA had no effect on NO release as measured by [14C]citrulline production. To determine whether GABA had any effect on the release of LHRH from these MBH explants, GABA was incubated with the tissue and the effect on LHRH release was determined. GABA (10(-5) or 10(-6) M) induced a 70% decrease in the release of LHRH, indicating that in the male rat GABA inhibits the release of this hypothalamic peptide. This inhibition in LHRH release induced by GABA was blocked by NMMA (300 microM), which indicates that GABA converts the stimulatory effect of NO on LHRH release into an inhibitory one, presumably via GABA receptors, which activate chloride channels that hyperpolarize the cell. Previous results have indicated that norepinephrine stimulates release of NO from the NOergic neurons, which then stimulates the release of LHRH. The current results indicate that the NO released also induces release of GABA, which then inhibits further LHRH release. Thus, in vivo the norepinephrinergic-driven pulses of LHRH release may be terminated by GABA released from GABAergic neurons via NO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and water secretion from intestinal epithelia requires enhancement of anion permeability across the apical membrane of Cl− secreting cells lining the crypt, the secretory gland of the intestine. Paneth cells located at the base of the small intestinal crypt release enteric defensins (cryptdins) apically into the lumen. Because cryptdins are homologs of molecules known to form anion conductive pores in phospholipid bilayers, we tested whether these endogenous antimicrobial peptides could act as soluble inducers of channel-like activity when applied to apical membranes of intestinal Cl− secreting epithelial cells in culture. Of the six peptides tested, cryptdins 2 and 3 stimulated Cl− secretion from polarized monolayers of human intestinal T84 cells. The response was reversible and dose dependent. In contrast, cryptdins 1, 4, 5, and 6 lacked this activity, demonstrating that Paneth cell defensins with very similar primary structures may exhibit a high degree of specificity in their capacity to elicit Cl− secretion. The secretory response was not inhibited by pretreatment with 8-phenyltheophyline (1 μM), or dependent on a concomitant rise in intracellular cAMP or cGMP, indicating that the apically located adenosine and guanylin receptors were not involved. On the other hand, cryptdin 3 elicited a secretory response that correlated with the establishment of an apically located anion conductive channel permeable to carboxyfluorescein. Thus cryptdins 2 and 3 can selectively permeabilize the apical cell membrane of epithelial cells in culture to elicit a physiologic Cl− secretory response. These data define the capability of cryptdins 2 and 3 to function as novel intestinal secretagogues, and suggest a previously undescribed mechanism of paracrine signaling that in vivo may involve the reversible formation of ion conductive channels by peptides released into the crypt microenvironment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inwardly rectifying potassium (K+) channels gated by G proteins (Kir3.x family) are widely distributed in neuronal, atrial, and endocrine tissues and play key roles in generating late inhibitory postsynaptic potentials, slowing the heart rate and modulating hormone release. They are directly activated by Gβγ subunits released from G protein heterotrimers of the Gi/o family upon appropriate receptor stimulation. Here we examine the role of isoforms of pertussis toxin (PTx)-sensitive G protein α subunits (Giα1–3 and GoαA) in mediating coupling between various receptor systems (A1, α2A, D2S, M4, GABAB1a+2, and GABAB1b+2) and the cloned counterpart of the neuronal channel (Kir3.1+3.2A). The expression of mutant PTx-resistant Gi/oα subunits in PTx-treated HEK293 cells stably expressing Kir3.1+3.2A allows us to selectively investigate that coupling. We find that, for those receptors (A1, α2A) known to interact with all isoforms, Giα1–3 and GoαA can all support a significant degree of coupling to Kir3.1+3.2A. The M4 receptor appears to preferentially couple to Giα2 while another group of receptors (D2S, GABAB1a+2, GABAB1b+2) activates the channel predominantly through Gβγ liberated from GoA heterotrimers. Interestingly, we have also found a distinct difference in G protein coupling between the two splice variants of GABAB1. Our data reveal selective pathways of receptor activation through different Gi/oα isoforms for stimulation of the G protein-gated inwardly rectifying K+ channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) protein has the ability to function as both a chloride channel and a channel regulator. The loss of these functions explains many of the manifestations of the cystic fibrosis disease (CF), including lung and pancreatic failure, meconium ileus, and male infertility. CFTR has previously been implicated in the cell regulatory volume decrease (RVD) response after hypotonic shocks in murine small intestine crypts, an effect associated to the dysfunction of an unknown swelling-activated potassium conductance. In the present study, we investigated the RVD response in human tracheal CF epithelium and the nature of the volume-sensitive potassium channel affected. Neither the human tracheal cell line CFT1, expressing the mutant CFTR-ΔF508 gene, nor the isogenic vector control line CFT1-LC3, engineered to express the βgal gene, showed RVD. On the other hand, the cell line CFT1-LCFSN, engineered to express the wild-type CFTR gene, presented a full RVD. Patch-clamp studies of swelling-activated potassium currents in the three cell lines revealed that all of them possess a potassium current with the biophysical and pharmacological fingerprints of the intermediate conductance Ca2+-dependent potassium channel (IK, also known as KCNN4). However, only CFT1-LCFSN cells showed an increase in IK currents in response to hypotonic challenges. Although the identification of the molecular mechanism relating CFTR to the hIK channel remains to be solved, these data offer new evidence on the complex integration of CFTR in the cells where it is expressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cDNA encoding a novel, inwardly rectifying K+ (K+in) channel protein, SKT1, was cloned from potato (Solanum tuberosum L.). SKT1 is related to members of the AKT family of K+in channels previously identified in Arabidopsis thaliana and potato. Skt1 mRNA is most strongly expressed in leaf epidermal fragments and in roots. In electrophysiological, whole-cell, patch-clamp measurements performed on baculovirus-infected insect (Spodoptera frugiperda) cells, SKT1 was identified as a K+in channel that activates with slow kinetics by hyperpolarizing voltage pulses to more negative potentials than −60 mV. The pharmacological inhibitor Cs+, when applied externally, inhibited SKT1-mediated K+in currents half-maximally with an inhibitor concentration (IC50) of 105 μm. An almost identical high Cs+ sensitivity (IC50 = 90 μm) was found for the potato guard-cell K+in channel KST1 after expression in insect cells. SKT1 currents were reversibly activated by a shift in external pH from 6.6 to 5.5, which indicates a physiological role for pH-dependent regulation of AKT-type K+in channels. Comparative studies revealed generally higher current amplitudes for KST1-expressing cells than for SKT1-expressing insect cells, which correlated with a higher targeting efficiency of the KST1 protein to the insect cell's plasma membrane, as demonstrated by fusions to green fluorescence protein.