97 resultados para Protein cross-link


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR). The cross-linked radioactive receptor peptide was isolated by reverse-phase HPLC after tryptic digestion of the labeled delta subunit. The sequence of this peptide, delta-(260-277), and the position of the label at Ala-268 were established by matrix-assisted laser-desorption-ionization mass spectrometry based on the molecular mass and on post-source decay fragment analysis. With the known dimensions of the AChR molecule, of the photolabel, and of alpha-neurotoxin, finding the cross-link at delta Ala-268 (located in the upper part of the channel-forming transmembrane helix M2) means that the center of the alpha-neurotoxin binding site is situated at least approximately 40 A from the extracellular surface of the AChR, proximal to the channel axis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present evidence that the size of an active site side chain may modulate the degree of hydrogen tunneling in an enzyme-catalyzed reaction. Primary and secondary kH/kT and kD/kT kinetic isotope effects have been measured for the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase at 25°C. As reported in earlier studies, the relationship between secondary kH/kT and kD/kT isotope effects provides a sensitive probe for deviations from classical behavior. In the present work, catalytic efficiency and the extent of hydrogen tunneling have been correlated for the alcohol dehydrogenase-catalyzed hydride transfer among a group of site-directed mutants at position 203. Val-203 interacts with the opposite face of the cofactor NAD+ from the alcohol substrate. The reduction in size of this residue is correlated with diminished tunneling and a two orders of magnitude decrease in catalytic efficiency. Comparison of the x-ray crystal structures of a ternary complex of a high-tunneling (Phe-93 → Trp) and a low-tunneling (Val-203 → Ala) mutant provides a structural basis for the observed effects, demonstrating an increase in the hydrogen transfer distance for the low-tunneling mutant. The Val-203 → Ala ternary complex crystal structure also shows a hyperclosed interdomain geometry relative to the wild-type and the Phe-93 → Trp mutant ternary complex structures. This demonstrates a flexibility in interdomain movement that could potentially narrow the distance between the donor and acceptor carbons in the native enzyme and may enhance the role of tunneling in the hydride transfer reaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In plants, cortical microtubules (MTs) occur in characteristically parallel groups maintained up to one microtubule diameter apart by fine filamentous cross-bridges. However, none of the plant microtubule-associated proteins (MAPs) so far purified accounts for the observed separation between MTs in cells. We previously isolated from carrot cytoskeletons a MAP fraction including 120- and 65-kDa MAPs and have now separated the 65-kDa carrot MAP by sucrose density centrifugation. MAP65 does not induce tubulin polymerization but induces the formation of bundles of parallel MTs in a nucleotide-insensitive manner. The bundling effect is inhibited by porcine MAP2, but, unlike MAP2, MAP65 is heat-labile. In the electron microscope, MAP65 appears as filamentous cross-bridges, maintaining an intermicrotubule spacing of 25–30 nm. Microdensitometer-computer correlation analysis reveals that the cross-bridges are regularly spaced, showing a regular axial spacing that is compatible with a symmetrical helical superlattice for 13 protofilament MTs. Because MAP65 maintains in vitro the inter-MT spacing observed in plants and is shown to decorate cortical MTs, it is proposed that this MAP is important for the organization of the cortical array in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Subcellular targeting and the activity of facilitative glucose transporters are likely to be regulated by interactions with cellular proteins. This report describes the identification and characterization of a protein, GLUT1 C-terminal binding protein (GLUT1CBP), that binds via a PDZ domain to the C terminus of GLUT1. The interaction requires the C-terminal four amino acids of GLUT1 and is isoform specific because GLUT1CBP does not interact with the C terminus of GLUT3 or GLUT4. Most rat tissues examined contain both GLUT1CBP and GLUT1 mRNA, whereas only small intestine lacked detectable GLUT1CBP protein. GLUT1CBP is also expressed in primary cultures of neurons and astrocytes, as well as in Chinese hamster ovary, 3T3-L1, Madin–Darby canine kidney, Caco-2, and pheochromocytoma-12 cell lines. GLUT1CBP is able to bind to native GLUT1 extracted from cell membranes, self-associate, or interact with the cytoskeletal proteins myosin VI, α-actinin-1, and the kinesin superfamily protein KIF-1B. The presence of a PDZ domain places GLUT1CBP among a growing family of structural and regulatory proteins, many of which are localized to areas of membrane specialization. This and its ability to interact with GLUT1 and cytoskeletal proteins implicate GLUT1CBP in cellular mechanisms for targeting GLUT1 to specific subcellular sites either by tethering the transporter to cytoskeletal motor proteins or by anchoring the transporter to the actin cytoskeleton.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In addition to the well-characterized GTP-dependent nuclear transport observed in permeabilized cells, we detected a mode of nuclear transport that was GTP-independent at elevated cytoplasmic calcium concentrations. Nuclear transport under these conditions was blocked by calmodulin inhibitors. Recombinant calmodulin restored ATP-dependent nuclear transport in the absence of cytosol. Calmodulin-dependent transport was inhibited by wheat germ agglutinin consistent with transport proceeding through nuclear pores. We propose that release of intracellular calcium stores upon cell activation inhibits GTP-dependent nuclear transport; the elevated cytosolic calcium then acts through calmodulin to stimulate the novel GTP-independent mode of import.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-γ1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In addition to the contractile proteins actin and myosin, contractile filaments of striated muscle contain other proteins that are important for regulating the structure and the interaction of the two force-generating proteins. In the thin filaments, troponin and tropomyosin form a Ca-sensitive trigger that activates normal contraction when intracellular Ca is elevated. In the thick filament, there are several myosin-binding proteins whose functions are unclear. Among these is the myosin-binding protein C (MBP-C). The cardiac isoform contains four phosphorylation sites under the control of cAMP and calmodulin-regulated kinases, whereas the skeletal isoform contains only one such site, suggesting that phosphorylation in cardiac muscle has a specific regulatory function. We isolated natural thick filaments from cardiac muscle and, using electron microscopy and optical diffraction, determined the effect of phosphorylation of MBP-C on cross bridges. The thickness of the filaments that had been treated with protein kinase A was increased where cross bridges were present. No change occurred in the central bare zone that is devoid of cross bridges. The intensity of the reflections along the 43-nm layer line, which is primarily due to the helical array of cross bridges, was increased, and the distance of the first peak reflection from the meridian along the 43-nm layer line was decreased. The results indicate that phosphorylation of MBP-C (i) extends the cross bridges from the backbone of the filament and (ii) increases their degree of order and/or alters their orientation. These changes could alter rate constants for attachment to and detachment from the thin filament and thereby modify force production in activated cardiac muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase (betaARK) is the prototypical member of the family of cytosolic kinases that phosphorylate guanine nucleotide binding-protein-coupled receptors and thereby trigger uncoupling between receptors and guanine nucleotide binding proteins. Herein we show that this kinase is subject to phosphorylation and regulation by protein kinase C (PKC). In cell lines stably expressing alpha1B- adrenergic receptors, activation of these receptors by epinephrine resulted in an activation of cytosolic betaARK. Similar data were obtained in 293 cells transiently coexpressing alpha1B- adrenergic receptors and betaARK-1. Direct activation of PKC with phorbol esters in these cells caused not only an activation of cytosolic betaARK-1 but also a translocation of betaARK immunoreactivity from the cytosol to the membrane fraction. A PKC preparation purified from rat brain phospborylated purified recombinant betaARK-1 to a stoichiometry of 0.86 phosphate per betaARK-1. This phosphorylation resulted in an increased activity of betaARK-1 when membrane-bound rhodopsin served as its substrate but in no increase of its activity toward a soluble peptide substrate. The site of phosphorylation was mapped to the C terminus of betaARK-1. We conclude that PKC activates betaARK by enhancing its translocation to the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During protein synthesis, the two elongation factors Tu and G alternately bind to the 50S ribosomal subunit at a site of which the protein L7/L12 is an essential component. L7/L12 is present in each 50S subunit in four copies organized as two dimers. Each dimer consists of distinct domains: a single N-terminal (“tail”) domain that is responsible for both dimerization and binding to the ribosome via interaction with the protein L10 and two independent globular C-terminal domains (“heads”) that are required for binding of elongation factors to ribosomes. The two heads are connected by flexible hinge sequences to the N-terminal domain. Important questions concerning the mechanism by which L7/L12 interacts with elongation factors are posed by us in response to the presence of two dimers, two heads per dimer, and their dynamic, mobile properties. In an attempt to answer these questions, we constructed a single-headed dimer of L7/L12 by using recombinant DNA techniques and chemical cross-linking. This chimeric molecule was added to inactive core particles lacking wild-type L7/L12 and shown to restore activity to a level approaching that of wild-type two-headed L7/L12.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PML/SP100 nuclear bodies (NBs) were first described as discrete subnuclear structures containing the SP100 protein. Subsequently, they were shown to contain the PML protein which is part of the oncogenic PML-RARα hybrid produced by the t(15;17) chromosomal translocation characteristic of acute promyelocytic leukemia. Yet, the physiological role of these nuclear bodies remains unknown. Here, we show that SP100 binds to members of the heterochromatin protein 1 (HP1) families of non-histone chromosomal proteins. Further, we demonstrate that a naturally occurring splice variant of SP100, here called SP100-HMG, is a member of the high mobility group-1 (HMG-1) protein family and may thus possess DNA-binding potential. Both HP1 and SP100-HMG concentrate in the PML/SP100 NBs, and overexpression of SP100 leads to enhanced accumulation of endogenous HP1 in these structures. When bound to a promoter, SP100, SP100-HMG and HP1 behave as transcriptional repressors in transfected mammalian cells. These observations present molecular evidence for an association between the PML/SP100 NBs and the chromatin nuclear compartment. They support a model in which the NBs may play a role in certain aspects of chromatin dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation by growth factors of the Ras-dependent signaling cascade results in the induction of p90 ribosomal S6 kinases (p90rsk). These are translocated into the nucleus upon phosphorylation by mitogen-activated protein kinases, with which p90rsk are physically associated in the cytoplasm. In humans there are three isoforms of the p90rsk family, Rsk-1, Rsk-2, and Rsk-3, which are products of distinct genes. Although these isoforms are structurally very similar, little is known about their functional specificity. Recently, mutations in the Rsk-2 gene have been associated with the Coffin–Lowry syndrome (CLS). We have studied a fibroblast cell line established from a CLS patient that bears a nonfunctional Rsk-2. Here we document that in CLS fibroblasts there is a drastic attenuation in the induced Ser-133 phosphorylation of transcription factor CREB (cAMP response element-binding protein) in response to epidermal growth factor stimulation. The effect is specific, since response to serum, cAMP, and UV light is unaltered. Furthermore, epidermal growth factor-induced expression of c-fos is severely impaired in CLS fibroblasts despite normal phosphorylation of serum response factor and Elk-1. Finally, coexpression of Rsk-2 in transfected cells results in the activation of the c-fos promoter via the cAMP-responsive element. Thus, we establish a link in the transduction of a specific growth factor signal to changes in gene expression via the phosphorylation of CREB by Rsk-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have identified and molecularly characterized a human protein with a Mr of 40,880 Da. After UV irradiation of HeLa cells, this protein was cross-linked to poly(A)-containing mRNA and was therefore designated mrnp 41 (for mRNA binding protein of 41 kDa). Cell fractionation and immunoblotting showed mrnp 41 in both the cytoplasm and the nucleus and particularly in the nuclear envelope. Immunofluorescence microscopy localized mrnp 41 to distinct foci in the nucleoplasm, to the nuclear rim, and to meshwork-like structures throughout the cytoplasm. The cytoplasmic meshwork staining was disrupted by prior treatment of cells with the actin filament- or microtubule-disrupting drugs cytochalasin or nocodazole, respectively, suggesting association of mrnp 41 with the cytoskeleton. Double immunofluorescence with antibodies against mrnp 41 and the cytoplasmic poly(A) binding protein showed colocalization to the cytoplasmic meshwork. Immunogold electronmicroscopy confirmed mrnp 41’s cytoplasmic and nucleoplasmic localization and revealed a striking labeling of nuclear pore complexes. Together these data suggest that mrnp 41 may function in nuclear export of mRNPs and/or in cytoplasmic transport on, or attachment to, the cytoskeleton. Consistent with a role of mrnp 41 in nuclear export are previous reports that mutations in homologs of mrnp 41 in Schizosaccharomyces pombe, designated Rae1p, or in Saccharomyces cerevisiae, designated Gle2p, result in mRNA accumulation in the nucleus although it is presently not known whether these homologs are mRNA binding proteins as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial pathogens have evolved sophisticated mechanisms to interact with their hosts. A specialized type III protein secretion system capable of translocating bacterial proteins into host cells has emerged as a central factor in the interaction between a variety of mammalian and plant pathogenic bacteria with their hosts. Here we describe AvrA, a novel target of the centisome 63 type III protein secretion system of Salmonella enterica. AvrA shares sequence similarity with YopJ of the animal pathogen Yersinia pseudotuberculosis and AvrRxv of the plant pathogen Xanthomonas campestris pv. vesicatoria. These proteins are the first examples of putative targets of type III secretion systems in animal and plant pathogenic bacteria that share sequence similarity. They may therefore constitute a novel family of effector proteins with related functions in the cross-talk of these pathogens with their hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic spines receive the vast majority of excitatory synaptic contacts in the mammalian brain and are presumed to contain machinery for the integration of various signal transduction pathways. Protein phosphatase 1 (PP1) is greatly enriched in dendritic spines and has been implicated in both the regulation of ionic conductances and long-term synaptic plasticity. The molecular mechanism whereby PP1 is localized to spines is unknown. We have now characterized a novel protein that forms a complex with the catalytic subunit of PP1 and is a potent modulator of PP1 enzymatic activity in vitro. Within the brain this protein displays a remarkably distinct localization to the heads of dendritic spines and has therefore been named spinophilin. Spinophilin has the properties expected of a scaffolding protein localized to the cell membrane and contains a single consensus sequence in PSD95/DLG/zo-1, which implies cross-linking of PP1 to transmembrane protein complexes. We propose that spinophilin represents a novel targeting subunit for PP1, which directs the enzyme to those substrates in the dendritic spine compartment, e.g., neurotransmitter receptors, which mediate the regulation of synaptic function by PP1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subcellular localization directed by specific A kinase anchoring proteins (AKAPs) is a mechanism for compartmentalization of cAMP-dependent protein kinase (PKA). Using a two-hybrid screen, a novel AKAP was isolated. Because it interacts with both the type I and type II regulatory subunits, it was defined as a dual specific AKAP or D-AKAP1. Here we report the cloning and characterization of another novel cDNA isolated from that screen. This new member of the D-AKAP family, D-AKAP2, also binds both types of regulatory subunits. A message of 5 kb pairs was detected for D-AKAP2 in all embryonic stages and in all adult tissues tested. In brain, skeletal muscle, kidney, and testis, a 10-kb mRNA was identified. In testis, several small mRNAs were observed. Therefore, D-AKAP2 represents a novel family of proteins. cDNA cloning from a mouse testis library identified the full length D-AKAP2. It is composed of 372 amino acids which includes the R binding fragment, residues 333–372, at its C-terminus. Based on coprecipitation assays, the R binding domain interacts with the N-terminal dimerization domain of RIα and RIIα. A putative RGS domain was identified near the N-terminal region of D-AKAP2. The presence of this domain raises the intriguing possibility that D-AKAP2 may interact with a Gα protein thus providing a link between the signaling machinery at the plasma membrane and the downstream kinase.