137 resultados para Protéine Kinase B (PKB)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Janus kinase 2 (Jak2) protein tyrosine kinase plays an important role in interleukin-3– or granulocyte–macrophage colony-stimulating factor–mediated signal transduction pathways leading to cell proliferation, activation of early response genes, and inhibition of apoptosis. However, it is unclear whether Jak2 can activate these signaling pathways directly without the involvement of cytokine receptor phosphorylation. To investigate the specific role of Jak2 in the regulation of signal transduction pathways, we generated gyrase B (GyrB)–Jak2 fusion proteins, dimerized through the addition of coumermycin. Coumermycin induced autophosphorylation of GyrB–Jak2 fusion proteins, thus bypassing receptor activation. Using different types of chimeric Jak2 molecules, we observed that although the kinase domain of Jak2 is sufficient for autophosphorylation, the N-terminal regions are essential for the phosphorylation of Stat5 and for the induction of short-term cell proliferation. Moreover, coumermycin-induced activation of Jak2 can also lead to increased levels of c-myc and CIS mRNAs in BA/F3 cells stably expressing the Jak2 fusion protein with the intact N-terminal region. Conversely, activation of the chimeric Jak2 induced neither phosphorylation of Shc or SHP-2 nor activation of the c-fos promoter. Here, we showed that the GyrB–Jak2 system can serve as an excellent model to dissect signals of receptor-dependent and -independent events. We also obtained evidence indicating a role for the N-terminal region of Jak2 in downstream signaling events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alternative pre-mRNA splicing patterns can change an extracellular stimulus, but the signaling pathways leading to these changes are still poorly characterized. Here, we describe a tyrosine-phosphorylated nuclear protein, YT521-B, and show that it interacts with the nuclear transcriptosomal component scaffold attachment factor B, and the 68-kDa Src substrate associated during mitosis, Sam68. Northern blot analysis demonstrated ubiquitous expression, but detailed RNA in situ analysis revealed cell type specificity in the brain. YT521-B protein is localized in the nucleoplasm and concentrated in 5–20 large nuclear dots. Deletion analysis demonstrated that the formation of these dots depends on the presence of the amino-terminal glutamic acid-rich domain and the carboxyl-terminal glutamic acid/arginine-rich region. We show that the latter comprises an important protein–protein interaction domain. The Src family kinase p59fyn-mediated tyrosine phosphorylation of Sam68 negatively regulates its association with YT521-B, and overexpression of p59fyn dissolves nuclear dots containing YT521-B. In vivo splicing assays demonstrated that YT521-B modulates alternative splice site selection in a concentration-dependent manner. Together, our data indicate that YT521-B and Sam68 may be part of a signal transduction pathway that influences splice site selection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelet-derived growth factor (PDGF) is a broadly expressed mitogenic and chemotactic factor with diverse roles in a number of physiologic and pathologic settings. The zinc finger transcription factors Sp1, Sp3 and Egr-1 bind to overlapping elements in the proximal PDGF B-chain promoter and activate transcription of this gene. The anthracycline nogalamycin has previously been reported to inhibit the capacity of Egr-1 to bind DNA in vitro. Here we used electrophoretic mobility shift assays to show that nogalamycin added to cells in culture did not alter the interaction of Egr-1 with the PDGF-B promoter. Instead, it enhanced the capacity of Sp1 to bind DNA. Nogalamycin increased PDGF-B mRNA expression at the level of transcription, which was abrogated by mutation of the Sp1 binding site in the PDGF-B promoter or overexpression of mutant Sp1. Rather than increasing total levels of Sp1, nogalamycin altered the phosphorylation state of the transcription factor. Overexpression of dominant-negative PKC-ζ blocked nogalamycin-inducible Sp1 phosphorylation and PDGF-B promoter-dependent expression. Nogalamycin stimulated the phosphorylation of PKC-ζ (on residue Thr410). These findings demonstrate for the first time that PKC-ζ and Sp1 phosphorylation mediate the inducible expression of this growth factor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutant I1A cells, lacking IL-1 receptor-associated kinase (IRAK) mRNA and protein, have been used to study the involvement of IRAK in NFκB and c-Jun N-terminal kinase (JNK) activation. A series of IRAK deletion constructs were expressed in I1A cells, which were then tested for their ability to respond to IL-1. Both the N-terminal death domain and the C-terminal region of IRAK are required for IL-1-induced NFκB and JNK activation, whereas the N-proximal undetermined domain is required for the activation of NFκB but not JNK. The phosphorylation and ubiquitination of IRAK deletion mutants correlate tightly with their ability to activate NFκB in response to IL-1, but IRAK can mediate IL-1-induced JNK activation without being phosphorylated. These studies reveal that the IL-1-induced signaling pathways leading to NFκB and JNK activation diverge either at IRAK or at a point nearer to the receptor.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the Xenopus oocyte system mitogen treatment triggers the G2/M transition by transiently inhibiting the cAMP-dependent protein kinase (PKA); subsequently, other signal transduction pathways are activated, including the mitogen-activated protein kinase (MAPK) and polo-like kinase pathways. To study the interactions between these pathways, we have utilized a cell-free oocyte extract that carries out the signaling events of oocyte maturation after addition of the heat-stable inhibitor of PKA, PKI. PKI stimulated the synthesis of Mos and activation of both the MAPK pathway and the Plx1/Cdc25C/cyclin B-Cdc2 pathway. Activation of the MAPK pathway alone by glutathione S-transferase (GST)-Mos did not lead to activation of Plx1 or cyclin B-Cdc2. Inhibition of the MAPK pathway in the extract by the MEK1 inhibitor U0126 delayed, but did not prevent, activation of the Plx1 pathway, and inhibition of Mos synthesis by cycloheximide had a similar effect, suggesting that MAPK activation is the only relevant function of Mos. Immunodepletion of Plx1 completely inhibited activation of Cdc25C and cyclin B-Cdc2 by PKI, indicating that Plx1 is necessary for Cdc25C activation. In extracts containing fully activated Plx1 and Cdc25C, inhibition of cyclin B-Cdc2 by p21Cip1 had no significant effect on either the phosphorylation of Cdc25C or the activity of Plx1. These results demonstrate that maintenance of Plx1 and Cdc25C activity during mitosis does not require cyclin B-Cdc2 activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nontypeable Hemophilus influenzae (NTHi) is an important human pathogen in both children and adults. In children, it causes otitis media, the most common childhood infection and the leading cause of conductive hearing loss in the United States. In adults, it causes lower respiratory tract infections in the setting of chronic obstructive pulmonary disease, the fourth leading cause of death in the United States. The molecular mechanisms underlying the pathogenesis of NTHi-induced infections remain undefined, but they may involve activation of NF-κB, a transcriptional activator of multiple host defense genes involved in immune and inflammatory responses. Here, we show that NTHi strongly activates NF-κB in human epithelial cells via two distinct signaling pathways, NF-κB translocation-dependent and -independent pathways. The NF-κB translocation-dependent pathway involves activation of NF-κB inducing kinase (NIK)–IKKα/β complex leading to IκBα phosphorylation and degradation, whereas the NF-κB translocation-independent pathway involves activation of MKK3/6–p38 mitogen-activated protein (MAP) kinase pathway. Bifurcation of NTHi-induced NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase pathways may occur at transforming growth factor-β activated kinase 1 (TAK1). Furthermore, we show that toll-like receptor 2 (TLR2) is required for NTHi-induced NF-κB activation. In addition, several key inflammatory mediators including IL-1β, IL-8, and tumor necrosis factor-α are up-regulated by NTHi. Finally, P6, a 16-kDa lipoprotein highly conserved in the outer membrane of all NTHi and H. influenzae type b strains, appears to also activate NF-κB via similar signaling pathways. Taken together, our results demonstrate that NTHi activates NF-κB via TLR2–TAK1-dependent NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase signaling pathways. These studies may bring new insights into molecular pathogenesis of NTHi-induced infections and open up new therapeutic targets for these diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations of the Bruton's tyrosine kinase (btk) gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immune deficiency (Xid) in mice. To establish the BTK role in B-cell activation we examined the responses of wild-type and Xid B cells to stimulation through surface IgM and CD40, the transducers of thymus independent-type 2 and thymus-dependent activation, respectively. Wild-type BTK was necessary for proliferation induced by soluble anti-IgM (a prototype for thymus independent-type 2 antigen), but not for responses to soluble CD40 ligand (CD40L, the B-cell activating ligand expressed on T-helper cells). In the absence of wild-type BTK, B cells underwent apoptotic death after stimulation with anti-IgM. In the presence of wild-type but not mutated BTK, anti-IgM stimulation reduced apoptotic cell death. In contrast, CD40L increased viability of both wild-type and Xid B cells. Importantly, viability after stimulation correlated with the induced expression of bcl-XL. In fresh ex vivo small resting B cells from wild-type mice there was only barely detectable bcl-XL protein, but there was more in the larger, low-density ("activated") splenic B cells and peritoneal B cells. In vitro Bcl-XL induction following ligation of sIgM-required BTK, was cyclosporin A (CsA)-sensitive and dependent on extracellular Ca2+. CD40-mediated induction of bcl-x required neither wild-type BTK nor extracellular Ca2+ and was insensitive to CsA. These results indicate that BTK lies upstream of bcl-XL in the sIgM but not the CD40 activation pathway. bcl-XL is the first induced protein to be placed downstream of BTK.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The NF-kappa B/Rel proteins are sequestered in the cytoplasm in association with the phosphorylated form of I kappa B alpha. Upon induction with a wide variety of agents, the activity of NF-kappa B/Rel proteins is preceded by the rapid degradation of I kappa B alpha protein. We report the identification and partial purification of a cellular kinase from unstimulated or stimulated murine cells, which specifically phosphorylates the C terminus of I kappa B alpha. There are several consensus sites for casein kinase II (CKII) in the C-terminal region of I kappa B alpha. Additionally, the activity of the cellular kinase is blocked by antibodies against the alpha subunit of CKII. No phosphorylation of the C-terminal region of I kappa B alpha can be detected if the five possible serine and threonine residues that can be phosphorylated by CKII are mutated to alanine. A two-dimensional tryptic phosphopeptide map of I kappa B alpha from unstimulated cells was identical to that obtained by in vitro phosphorylation of I kappa B alpha with the partially purified cellular kinase. We propose that constitutive phosphorylation of I kappa B alpha is carried out by CKII.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorylation is thought to be an essential first step in the prompt deactivation of photoexcited rhodopsin. In vitro, the phosphorylation can be catalyzed either by rhodopsin kinase (RK) or by protein kinase C (PKC). To investigate the specific role of RK, we inactivated both alleles of the RK gene in mice. This eliminated the light-dependent phosphorylation of rhodopsin and caused the single-photon response to become larger and longer lasting than normal. These results demonstrate that RK is required for normal rhodopsin deactivation. When the photon responses of RK−/− rods did finally turn off, they did so abruptly and stochastically, revealing a first-order backup mechanism for rhodopsin deactivation. The rod outer segments of RK−/− mice raised in 12-hr cyclic illumination were 50% shorter than those of normal (RK+/+) rods or rods from RK−/− mice raised in constant darkness. One day of constant light caused the rods in the RK−/− mouse retina to undergo apoptotic degeneration. Mice lacking RK provide a valuable model for the study of Oguchi disease, a human RK deficiency that causes congenital stationary night blindness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure at 2.0-Å resolution of the complex of the Escherichia coli chemotaxis response regulator CheY and the phosphoacceptor-binding domain (P2) of the kinase CheA is presented. The binding interface involves the fourth and fifth helices and fifth β-strand of CheY and both helices of P2. Surprisingly, the two heterodimers in the asymmetric unit have two different binding modes involving the same interface, suggesting some flexibility in the binding regions. Significant conformational changes have occurred in CheY compared with previously determined unbound structures. The active site of CheY is exposed by the binding of the kinase domain, possibly to enhance phosphotransfer from CheA to CheY. The conformational changes upon complex formation as well as the observation that there are two different binding modes suggest that the plasticity of CheY is an essential feature of response regulator function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular signals governing cellular proliferation and developmental progression during lymphocyte development are incompletely understood. The tyrosine kinase Blk is expressed preferentially in the B lineage, but its function in B cell development has been largely unexplored. We have generated transgenic mice expressing constitutively active Blk [Blk(Y495F)] in the B and T lymphoid compartments. Expression of Blk(Y495F) in the B lineage at levels similar to that of endogenous Blk induced B lymphoid tumors of limited clonality, whose phenotypes are characteristic of B cell progenitors at the proB/preB-I to preB-II transition. Expression of constitutively active Blk in the T lineage resulted in the appearance of clonal, thymic lymphomas composed of intermediate single positive cells. Taken together, these results indicate that specific B and T cell progenitor subsets are preferentially susceptible to transformation by Blk(Y495F) and suggest a role for Blk in the control of proliferation during B cell development.