31 resultados para Promoter Regions (Genetics)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the regulation of the human fatty acid synthase gene by the thyroid hormone triiodothyronine, various constructs of the human fatty acid synthase promoter and the luciferase reporter gene were transfected in combination with plasmids expressing the thyroid hormone and the retinoid X receptors in HepG2 cells. The reporter gene was activated 25-fold by the thyroid hormone in the presence of the thyroid hormone receptor. When both the thyroid hormone and the retinoid X receptors were expressed in HepG2 cells, there was about a 100-fold increase in reporter gene expression. 5′-Deletion analysis disclosed two thyroid hormone response elements, TRE1 (nucleotides −870 to −650) and TRE2 (nucleotides −272 to −40), in the human fatty acid synthase promoter. The presence of thyroid hormone response elements in these two regions of the promoter was confirmed by cloning various fragments of these two regions in the minimal thymidine kinase promoter−luciferase reporter gene plasmid construct and determining reporter gene expression. The results of this cloning procedure and those of electrophoretic mobility shift assays indicated that the sequence GGGTTAcgtcCGGTCA (nucleotides −716 to −731) represents TRE1 and that the sequence GGGTCC (nucleotides −117 to −112) represents TRE2. The sequence of TRE1 is very similar to the consensus sequence of the thyroid hormone response element, whereas the sequence of TRE2 contains only a half-site of the thyroid hormone response element consensus motif because it lacks the direct repeat. The sequences on either side of TRE2 seem to influence its response to the thyroid hormone and retinoid X receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Entamoeba histolytica is a single cell eukaryote that is the etiologic agent of amoebic colitis. Core promoter elements of E. histolytica protein encoding genes include a TATA-like sequence (GTATTTAAAG/C) at −30, a novel element designated GAAC (GAACT) that has a variable location between TATA and the site of transcription initiation, and a putative initiator (Inr) element (AAAAATTCA) overlying the site of transcription initiation. The presence of three separate conserved sequences in a eukaryotic core promoter is unprecedented and prompted examination of their roles in regulating transcription initiation. Alterations of all three regions in the hgl5 gene decreased reporter gene activity with the greatest effect seen by mutation of the GAAC element. Positional analysis of the TATA box demonstrated that transcription initiated consistently 30–31 bases downstream of the TATA region. Mutation of either the TATA or GAAC elements resulted in the appearance of new transcription start sites upstream of +1 in the promoter of the hgl5 gene. Mutation of the Inr element resulted in no change in the site of transcription initiation; however, in the presence of a mutated TATA and GAAC regions, the Inr element controlled the site of transcription initiation. We conclude that all three elements play a role in determining the site of transcription initiation. The variable position of the GAAC element relative to the site of transcription initiation, and the multiple transcription initiations that resulted from its mutation, indicate that the GAAC element has an important and apparently novel role in transcriptional control in E. histolytica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously demonstrated that α1B-adrenergic receptor (AR) gene transcription, mRNA, and functionally coupled receptors increase during 3% O2 exposure in aorta, but not in vena cava smooth muscle cells (SMC). We report here that α1BAR mRNA also increases during hypoxia in liver and lung, but not heart and kidney. A single 2.7-kb α1BAR mRNA was detected in aorta and vena cava during normoxia and hypoxia. The α1BAR 5′ flanking region was sequenced to −2,460 (relative to ATG +1). Transient transfection experiments identify the minimal promoter region between −270 and −143 and sequence between −270 and −248 that are required for transcription of the α1BAR gene in aorta and vena cava SMC during normoxia and hypoxia. An ATTAAA motif within this sequence specifically binds aorta, vena cava, and DDT1MF-2 nuclear proteins, and transcription primarily initiates downstream of this motif at approximately −160 in aorta SMC. Sequence between −837 and −273 conferred strong hypoxic induction of transcription in aorta, but not in vena cava SMC, whereas the cis-element for the transcription factor, hypoxia-inducible factor 1, conferred hypoxia-induced transcription in both aorta and vena cava SMC. These data identify sequence required for transcription of the α1BAR gene in vascular SMC and suggest the atypical TATA-box, ATTAAA, may mediate this transcription. Hypoxia-sensitive regions of the α1BAR gene also were identified that may confer the differential hypoxic increase in α1BAR gene transcription in aorta, but not in vena cava SMC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequence-selective transcription by bacterial RNA polymerase (RNAP) requires σ factor that participates in both promoter recognition and DNA melting. RNAP lacking σ (core enzyme) will initiate RNA synthesis from duplex ends, nicks, gaps, and single-stranded regions. We have used DNA templates containing short regions of heteroduplex (bubbles) to compare initiation in the presence and absence of various σ factors. Using bubble templates containing the σD-dependent flagellin promoter, with or without its associated upstream promoter (UP) element, we demonstrate that UP element stimulation occurs efficiently even in the absence of σ. This supports a model in which the UP element acts primarily through the α subunit of core enzyme to increase the initial association of RNAP with the promoter. Core and holoenzyme do differ substantially in the template positions chosen for initiation: σD restricts initiation to sites 8–9 nucleotides downstream of the conserved −10 element. Remarkably, σA also has a dramatic effect on start-site selection even though the σA holoenzyme is inactive on the corresponding homoduplexes. The start sites chosen by the σA holoenzyme are located 8 nucleotides downstream of sequences on the nontemplate strand that resemble the conserved −10 hexamer recognized by σA. Thus, σA appears to recognize the −10 region even in a single-stranded state. We propose that in addition to its described roles in promoter recognition and start-site melting, σ also localizes the transcription start site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The murine B29 (Igβ) promoter is B cell specific and contains essential SP1, ETS, OCT, and Ikaros motifs. Flanking 5′ DNA sequences inhibit B29 promoter activity, suggesting this region contains silencer elements. Two adjacent 5′ DNA segments repress transcription by the murine B29 promoter in a position- and orientation-independent manner, analogous to known silencers. Both these 5′ segments also inhibit transcription by several heterologous promoters in B cells, including mb-1, c-fos, and human B29. These 5′ segments also inhibit transcription by the c-fos promoter in T cells suggesting they are not B cell-specific elements. DNase I footprint analyses show an approximately 70-bp protected region overlapping the boundary between the two negative regulatory DNA segments and corresponding to binding sites for at least two different DNA-binding proteins. Within this footprint, two unrelated 30-bp cis-acting DNA motifs (designated TOAD and FROG) function as position- and orientation-independent silencers when located directly 5′ of the murine B29 promoter. These two silencer motifs act cooperatively to restrict the transcriptional activity of the B29 promoter. Neither of these motifs resembles any known silencers. Mutagenesis of the TOAD and FROG motifs in their respective 5′ DNA segments eliminates the silencing activity of these upstream regions, indicating these two motifs as the principal B29 silencer elements within these regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pleistocene was a dynamic period for Holarctic mammal species, complicated by episodes of glaciation, local extinctions, and intercontinental migration. The genetic consequences of these events are difficult to resolve from the study of present-day populations. To provide a direct view of population genetics in the late Pleistocene, we measured mitochondrial DNA sequence variation in seven permafrost-preserved brown bear (Ursus arctos) specimens, dated from 14,000 to 42,000 years ago. Approximately 36,000 years ago, the Beringian brown bear population had a higher genetic diversity than any extant North American population, but by 15,000 years ago genetic diversity appears similar to the modern day. The older, genetically diverse, Beringian population contained sequences from three clades now restricted to local regions within North America, indicating that current phylogeographic patterns may provide misleading data for evolutionary studies and conservation management. The late Pleistocene phylogeographic data also indicate possible colonization routes to areas south of the Cordilleran ice sheet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription of fatty acid synthase (FAS), a central enzyme in de novo lipogenesis, is dramatically induced by fasting/refeeding and insulin. We reported that upstream stimulatory factor binding to the −65 E-box is required for induction of the FAS transcription by insulin in 3T3-L1 adipocytes. On the other hand, we recently found that two upstream 5′ regions are required for induction in vivo by fasting/refeeding and insulin; one at −278 to −131 albeit at a low level, and the other at −444 to −278 with an E-box at −332 where upstream stimulatory factor functions for maximal induction. Here, we generated double transgenic mice carrying the chloramphenicol acetyltransferase reporter driven by the various 5′ deletions of the FAS promoter region and a truncated active form of the sterol regulatory element (SRE) binding protein (SREBP)-1a. We found that SREBP participates in the nutritional regulation of the FAS promoter and that the region between −278 and −131 bp is required for SREBP function. We demonstrate that SREBP binds the −150 canonical SRE present between −278 and −131, and SREBP can function through the −150 SRE in cultured cells. These in vivo and in vitro results indicate that SREBP is involved in the nutritional induction of the FAS promoter via the −278/−131 region and that the −150 SRE is the target sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the ~2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase–PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GAL11 gene encodes an auxiliary transcription factor required for full expression of many genes in yeast. The GAL11-encoded protein (Gal11p) has recently been shown to copurify with the holoenzyme of RNA polymerase II. Here we report that Gal11p stimulates basal transcription in a reconstituted transcription system composed of recombinant or highly purified transcription factors, TFIIB, TFIIE, TFIIF, TFIIH, and TATA box-binding protein and core RNA polymerase II. We further demonstrate that each of the two domains of Gal11p essential for in vivo function respectively participates in the binding to the small and large subunits of TFIIE. The largest subunit of RNA polymerase II was coprecipitated by anti-hemagglutinin epitope antibody from crude extract of GAL11 wild type yeast expressing hemagglutinintagged small subunit of TFIIE. Such a coprecipitation of the RNA polymerase subunit was seen but in a greatly reduced amount, if extract was prepared from gal11 null yeast. In light of these findings, we suggest that Gal11p stimulates promoter activity by enhancing an association of TFIIE with the preinitiation complex in the cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promoters recognized by sigma 70, the primary sigma of Escherichia coli, consist of two highly conserved hexamers located at -10 and -35 bp from the start point of transcription, separated by a preferred spacing of 17 bp. sigma factors have two distinct DNA binding domains that recognize the two hexamer sequences. However, the component of RNA polymerase recognizing the length of the spacing between hexamers has not been determined. Using an equilibrium DNA binding competition assay, we demonstrate that a polypeptide of sigma 70 carrying both DNA binding domains is very sensitive to promoter spacing, whereas a sigma 70 polypeptide with only one DNA binding domain is not. Furthermore, a mutant sigma, selected for increasing transcription of the minimal lac promoter (18-bp spacer), has an altered response to promoter spacing in vivo and in vitro. Our data support the idea that sigma makes simultaneous, productive contacts at both the -10 and the -35 regions of the promoter and discerns the spacing between these conserved regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vaccinia virus early transcription factor (VETF), a heterodimeric protein composed of 82- and 70-kDa subunits, interacts with viral early promoters at both a sequence-specific core region upstream and a sequence-independent region downstream of the RNA start site. To determine the VETF subunit-promoter interactions, 32P-labeled DNA targets were chemically synthesized with uniquely positioned phosphorothioates to which azidophenacyl bromide moieties were coupled. After incubating the derivatized promoter with VETF and exposing the complex to 302-nm light, the protein was denatured and the individual subunits with or without covalently bound DNA were isolated with specific antiserum and analyzed by SDS/polyacrylamide gel electrophoresis. Using a set of 26 duplex probes, with uniquely positioned aryl azide moieties on the coding or template strands, we found that the 82-kDa subunit interacted primarily with the core region of the promoter, whereas the 70-kDa subunit interacted with the downstream region. Nucleotide substitutions in the core region that downregulate transcription affected the binding of both subunits: the 82-kDa subunit no longer exhibited specificity for upstream regions of the promoter but also bound to downstream regions, whereas the binding of the 70-kDa subunit was abolished even though the mutations were far upstream of its binding site. These results suggested mechanisms by which the interaction of the 82-kDa subunit with the core sequence directs binding of the 70-kDa subunit to DNA downstream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolutionarily conserved Krüppel-associated box (KRAB) is present in the N-terminal regions of more than one-third of all Krüppel-class zinc finger proteins. Recent experiments have demonstrated that the KRAB-A domain tethered to a promoter DNA by connecting to heterologous DNA-binding protein domain or targeted to a promoter-proximal RNA sequence acts as a transcriptional silencing of RNA polymerase II promoters. Here we show that expression of KRAB domain suppresses in vivo the activating function of various defined activating transcription factors, and we demonstrate that the KRAB domain specifically silences the activity of promoters whose initiation is dependent on the presence of a TATA box. Promoters whose accurate transcription initiation is directed by a pyrimidine-rich initiator element, however, are relatively unaffected. We also report in vitro transcription experiments indicating that the KRAB domain is able to repress both activated and basal promoter activity. Thus, the KRAB domain appears to repress the activity of certain promoters through direct communication with TATA box-dependent basal transcription machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of inducible nitric oxide synthase (NOS2) is complex and is regulated in part by gene transcription. In this investigation we studied the regulation of NOS2 in a human liver epithelial cell line (AKN-1) which expresses high levels of NOS2 mRNA and protein in response to tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma (cytokine mix, CM). Nuclear run-on analysis revealed that CM transcriptionally activated the human NOS2 gene. To delineate the cytokine-responsive regions of the human NOS2 promoter, we stimulated AKN-1 cells with CM following transfection of NOS2 luciferase constructs. Analysis of the first 3.8 kb upstream of the NOS2 gene demonstrated basal promoter activity but failed to show any cytokine-inducible activity. However, 3- to 5-fold inductions of luciferase activity were seen in constructs extending up to -5.8 and -7.0 kg, and a 10-fold increase was seen upon transfection of a -16 kb construct. Further analysis of various NOS2 luciferase constructs ligated upstream of the thymidine kinase promoter identified three regions containing cytokine-responsive elements in the human NOS2 gene: -3.8 to -5.8, -5.8 to -7.0, and -7.0 to -16 kb. These results are in marked contrast with the murine macrophage NOS2 promoter in which only 1 kb of the proximal 5' flanking region is necessary to confer inducibility to lipopolysaccharide and interferon gamma. These data demonstrate that the human NOS2 gene is transcriptionally regulated by cytokines and identify multiple cytokine-responsive regions in the 5' flanking region of the human NOS2 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The estrogen receptor (ER), a 66-kDa protein that mediates the actions of estrogens in estrogen-responsive tissues, is a member of a large superfamily of nuclear hormone receptors that function as ligand-activated transcription factors. ER shares a conserved structural and functional organization with other members of this superfamily, including two transcriptional activation functions (AFs), one located in its amino-terminal region (AF-1) and the second located in its carboxyl-terminal, ligand-binding region (AF-2). In most promoter contexts, synergism between AF-1 and AF-2 is required for full ER activity. In these studies, we demonstrate a functional interaction of the two AF-containing regions of ER, when expressed as separate polypeptides in mammalian cells, in response to 17 beta-estradiol (E2) and antiestrogen binding. The interaction was transcriptionally productive only in response to E2, and was eliminated by point or deletion mutations that destroy AF-1 or AF-2 activity or E2 binding. Our results suggest a definitive mechanistic role for E2 in the activity of ER--namely, to alter receptor conformation to promote an association of the amino- and carboxyl-terminal regions, leading to transcriptional synergism between AF-1 and AF-2. The productive re assembly of two portions of ER expressed in cells as separate polypeptides demonstrates the evolutionarily conserved modular structural and functional organization of the nuclear hormone receptors. The ligand-dependent interaction of the two AF-containing regions of ER allows for the assembly of a complete activation function from two distinct regions within the same protein, providing a mechanism for hormonally regulated transcription.