20 resultados para Polypyrimidine Tract


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To gain insight into the structural basis of DNA bending by adenine–thymine tracts (A-tracts) and their role in DNA recognition by gene-regulatory proteins, we have determined the crystal structure of the high-affinity DNA target of the cancer-associated human papillomavirus E2 protein. The three independent B-DNA molecules of the crystal structure determined at 2.2-Å resolution are examples of A-tract-containing helices where the global direction and magnitude of curvature are in accord with solution data, thereby providing insights, at the base pair level, into the mechanism of DNA bending by such sequence motifs. A comparative analysis of E2–DNA conformations with respect to other structural and biochemical studies demonstrates that (i) the A-tract structure of the core region, which is not contacted by the protein, is critical for the formation of the high-affinity sequence-specific protein–DNA complex, and (ii) differential binding affinity is regulated by the intrinsic structure and deformability encoded in the base sequence of the DNA target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urinary tract infections, caused mainly by Escherichia coli, are among the most common infectious diseases. Most isolates of the uropathogenic E.coli can express type 1 and P fimbriae containing adhesins that recognize cell receptors. While P fimbriae recognize kidney glycolipid receptors and are involved in peyelonephritis, the urothelial for type 1 fimbriae were not identified. We show that type 1-fimbriated E. coli recognize uroplakins Ia and Ib, two major glycoproteins of urothelial apical plaques. Anchorage of E. coli to urothelial surface via type 1 fimbriae-uroplakin I interactions may play a role in its bladder colonization and eventual ascent through the ureters, against urine flow, to invade the kidneys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 fimbriae are adhesion organelles expressed by many Gram-negative bacteria. They facilitate adherence to mucosal surfaces and inflammatory cells in vitro, but their contribution to virulence has not been defined. This study presents evidence that type 1 fimbriae increase the virulence of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory response to infection. In a clinical study, we observed that disease severity was greater in children infected with E. coli O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1 negative isolates of the same serotype. The E. coli O1:K1:H7 isolates had the same electrophoretic type, were hemolysin-negative, expressed P fimbriae, and carried the fim DNA sequences. When tested in a mouse urinary tract infection model, the type 1-positive E. coli O1:K1:H7 isolates survived in higher numbers, and induced a greater neutrophil influx into the urine, than O1:K1:H7 type 1-negative isolates. To confirm a role of type 1 fimbriae, a fimH null mutant (CN1016) was constructed from an O1:K1:H7 type 1-positive parent. E. coli CN1016 had reduced survival and inflammatogenicity in the mouse urinary tract infection model. E. coli CN1016 reconstituted with type 1 fimbriae (E. coli CN1018) had restored virulence similar to that of the wild-type parent strain. These results show that type 1 fimbriae in the genetic background of a uropathogenic strain contribute to the pathogenesis of E. coli in the urinary tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In central neurons, monamine neurotransmitters are taken up and stored within two distinct classes of regulated secretory vesicles: small synaptic vesicles and large dense core vesicles (DCVs). Biochemical and pharmacological evidence has shown that this uptake is mediated by specific vesicular monamine transporters (VMATs). Recent molecular cloning techniques have identified the vesicular monoamine transporter (VMAT2) that is expressed in brain. This transporter determines the sites of intracellular storage of monoamines and has been implicated in both the modulation of normal monoaminergic neurotransmission and the pathogenesis of related neuropsychiatric disease. We used an antiserum against VMAT2 to examine its ultrastructural distribution in rat solitary tract nuclei, a region that contains a dense and heterogeneous population of monoaminergic neurons. We find that both immunoperoxidase and immunogold labeling for VMAT2 localize to DCVs and small synaptic vesicles in axon terminals, the trans-Golgi network of neuronal perikarya, tubulovesicles of smooth endoplasmic reticulum, and potential sites of vesicular membrane recycling. In axon terminals, immunogold labeling for VMAT2 was preferentially associated with DCVs at sites distant from typical synaptic junctions. The results provide direct evidence that a single VMAT is expressed in two morphologically distinct types of regulated secretory vesicles in central monoaminergic neurons.