30 resultados para Perfusion mésentérique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

NO synthases are widely distributed in the lung and are extensively involved in the control of airway and vascular homeostasis. It is recognized, however, that the O2-rich environment of the lung may predispose NO toward toxicity. These Janus faces of NO are manifest in recent clinical trials with inhaled NO gas, which has shown therapeutic benefit in some patient populations but increased morbidity in others. In the airways and circulation of humans, most NO bioactivity is packaged in the form of S-nitrosothiols (SNOs), which are relatively resistant to toxic reactions with O2/O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document}. This finding has led to the proposition that channeling of NO into SNOs may provide a natural defense against lung toxicity. The means to selectively manipulate the SNO pool, however, has not been previously possible. Here we report on a gas, O-nitrosoethanol (ENO), which does not react with O2 or release NO and which markedly increases the concentration of indigenous species of SNO within airway lining fluid. Inhalation of ENO provided immediate relief from hypoxic pulmonary vasoconstriction without affecting systemic hemodynamics. Further, in a porcine model of lung injury, there was no rebound in cardiopulmonary hemodynamics or fall in oxygenation on stopping the drug (as seen with NO gas), and additionally ENO protected against a decline in cardiac output. Our data suggest that SNOs within the lung serve in matching ventilation to perfusion, and can be manipulated for therapeutic gain. Thus, ENO may be of particular benefit to patients with pulmonary hypertension, hypoxemia, and/or right heart failure, and may offer a new therapeutic approach in disorders such as asthma and cystic fibrosis, where the airways may be depleted of SNOs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two views currently dominate research into cell function and regulation. Model I assumes that cell behavior is quite similar to that expected for a watery bag of enzymes and ligands. Model II assumes that three-dimensional order and structure constrain and determine metabolite behavior. A major problem in cell metabolism is determining why essentially all metabolite concentrations are remarkably stable (are homeostatic) over large changes in pathway fluxes—for convenience, this is termed the [s] stability paradox. For muscle cells, ATP and O2 are the most perfectly homeostatic, even though O2 delivery and metabolic rate correlate in a 1:1 fashion. In total, more than 60 metabolites are known to be remarkably homeostatic in differing metabolic states. Several explanations of [s] stability are usually given by traditional model I studies—none of which apply to all enzymes in a pathway, and all of which require diffusion as the means for changing enzyme–substrate encounter rates. In contrast, recent developments in our understanding of intracellular myosin, kinesin, and dyenin motors running on actin and tubulin tracks or cables supply a mechanistic basis for regulated intracellular circulation systems with cytoplasmic streaming rates varying over an approximately 80-fold range (from 1 to >80 μm × sec−1). These new studies raise a model II hypothesis of intracellular perfusion or convection as a primary means for bringing enzymes and substrates together under variable metabolic conditions. In this view, change in intracellular perfusion rates cause change in enzyme–substrate encounter rates and thus change in pathway fluxes with no requirement for large simultaneous changes in substrate concentrations. The ease with which this hypothesis explains the [s] stability paradox is one of its most compelling features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We cloned a rat vascular chymase (RVCH) from smooth muscle cells (SMCs) that converts angiotensin I to II and is up-regulated in SMC from spontaneously hypertensive vs. normotensive rats. To determine whether increased activity of RVCH is sufficient to cause hypertension, transgenic mice were generated with targeted conditional expression of RVCH to SMC, with the use of the tetracycline-controlled transactivator (tTA). We confirmed conditional expression of RVCH by mRNA, protein, and chymase activity in the absence, but not in the presence, of dietary doxycycline. The systolic blood pressure (mmHg), measured by carotid artery cannulation at 10–12 weeks of age, was higher in tTA+/RVCH+ mice than in nonbinary transgenic littermates (136 ± 4 vs. 109 ± 3) (P < 0.05), as were the diastolic and mean pressures. Hypertension was completely reversed by doxycycline, suggesting a causal link with chymase expression. Medial thickening of mesenteric arteries from tTA+/RVCH+ mice vs. littermates (0.82 ± 0.1 vs. 0.42 ± 0.02) (P < 0.05) was associated with increased SMC proliferation, as judged by positive immunoreactivity, with the use of an antibody to the proliferating cell nuclear antigen. These structural changes were prevented by doxycycline. Perfusion myography of mesenteric arteries from tTA+/RVCH+ mice also revealed increased vasoconstriction in response to phenylephrine and impaired metacholine-induced vasodilatation when compared with littermate controls or with the doxycyline-treated group. Our studies suggest that up-regulation of this vascular chymase is sufficient to cause a hypertensive arteriopathy, and that RVCH may be a candidate gene and a therapeutic target in patients with high blood pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced Cl− efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl− efflux via two mechanisms. The first is a direct effect of pHc on Cl− efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl− efflux. Cl− efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl− efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl− efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to be important in normal airway physiology and in the pathophysiology of cystic fibrosis (CF). An in situ fluorescence method was applied to measure the ionic composition and viscosity of freshly secreted fluid from airway glands. Fragments of human large airways obtained at the time of lung transplantation were mounted in a humidified perfusion chamber and the mucosal surface was covered by a thin layer of oil. Individual droplets of secreted fluid were microinjected with fluorescent indicators for measurement of [Na+], [Cl−], and pH by ratio imaging fluorescence microscopy and viscosity by fluorescence recovery after photobleaching. After carbachol stimulation, 0.1–0.5 μl of fluid accumulated in spherical droplets at gland orifices in ≈3–5 min. In gland fluid from normal human airways, [Na+] was 94 ± 8 mM, [Cl−] was 92 ± 12 mM, and pH was 6.97 ± 0.06 (SE, n = 7 humans, more than five glands studied per sample). Apparent fluid viscosity was 2.7 ± 0.3-fold greater than that of saline. Neither [Na+] nor pH differed in gland fluid from CF airways, but viscosity was significantly elevated by ≈2-fold compared to normal airways. These results represent the first direct measurements of ionic composition and viscosity in uncontaminated human gland secretions and indicate similar [Na+], [Cl−], and pH to that in the airway surface liquid. The elevated gland fluid viscosity in CF may be an important factor promoting bacterial colonization and airway disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portal hypertension resulting from increased intrahepatic resistance is a common complication of chronic liver diseases and a leading cause of death in patients with liver cirrhosis, a scarring process of the liver that includes components of both increased fibrogenesis and wound contraction. A reduced production of nitric oxide (NO) resulting from an impaired enzymatic function of endothelial NO synthase and an increased contraction of hepatic stellate cells (HSCs) have been demonstrated to contribute to high intrahepatic resistance in the cirrhotic liver. 2-(Acetyloxy) benzoic acid 3-(nitrooxymethyl) phenyl ester (NCX-1000) is a chemical entity obtained by adding an NO-releasing moiety to ursodeoxycholic acid (UDCA), a compound that is selectively metabolized by hepatocytes. In this study we have examined the effect of NCX-1000 and UDCA on liver fibrosis and portal hypertension induced by i.p. injection of carbon tetrachloride in rats. Our results demonstrated that although both treatments reduced liver collagen deposition, NCX-1000, but not UDCA, prevented ascite formation and reduced intrahepatic resistance in carbon tetrachloride-treated rats as measured by assessing portal perfusion pressure. In contrast to UDCA, NCX-1000 inhibited HSC contraction and exerted a relaxing effect similar to the NO donor S-nitroso-N-acetylpenicillamine. HSCs were able to metabolize NCX-1000 and release nitrite/nitrate in cell supernatants. In aggregate these data indicate that NCX-1000, releasing NO into the liver microcirculation, may provide a novel therapy for the treatment of patients with portal hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pancreatic proteases in the duodenum inhibit the release of cholecystokinin (CCK) and thus exert feedback control of pancreatic exocrine secretion. Exclusion of proteases from the duodenum either by the diversion of bile-pancreatic juice or by the addition of protease inhibitors stimulates exocrine pancreatic secretion. The mechanism by which pancreatic proteases in the duodenum regulate CCK secretion is unknown. In this study, we isolated a trypsin-sensitive peptide that is secreted intraduodenally, releases CCK, and stimulates pancreatic enzyme secretion in rats. This peptide was found to be identical to the porcine diazepam binding inhibitor by peptide sequencing and mass spectrometry analysis. Intraduodenal infusion of 200 ng of synthetic porcine diazepam binding inhibitor1-86 in rats significantly stimulated pancreatic amylase output. Infusion of the CCK antagonist MK-329 completely blocked the diazepam binding inhibitor-stimulated amylase secretion. Similarly, diazepam binding inhibitor33-52 [corrected] also stimulated CCK release and pancreatic secretion in a dose-dependent manner although it was 100 times less potent than the whole peptide. Using a perfusion system containing isolated mucosal cells from the proximal intestine of rats, porcine diazepam binding inhibitor 10(-12) M) dose dependently stimulated CCK secretion. In separate studies, it was demonstrated that luminal secretion of the diazepam binding inhibitor immunoreactivity (7.5 X 10(11) M) could be detected in rat's intestinal washing following the diversion of bile-pancreatic juice. The secretion of this peptide was inhibited by atropine. In conclusion, we have isolated and characterized a CCK-releasing peptide that has a sequence identical to the porcine diazepam binding inhibitor from pig intestinal mucosa and that stimulates CCK release when administered intraduodenally in rat. This peptide may mediate feedback regulation of pancreatic enzyme secretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strongly rectifying IRK-type inwardly rectifying K+ channels are involved in the control of neuronal excitability in the mammalian brain. Whole-cell patch-clamp experiments show that cloned rat IRK1 (Kir 2.1) channels, when heterologously expressed in mammalian COS-7 cells, are inhibited following the activation of coexpressed serotonin (5-hydroxytryptamine) type 1A receptors by receptor agonists. Inhibition is mimicked by internal perfusion with GTP[gamma-S] and elevation of internal cAMP concentrations. Addition of the catalytic subunits of protein kinase A (PKA) to the internal recording solution causes complete inhibition of wild-type IRK1 channels, but not of mutant IRK1(S425N) channels in which a C-terminal PKA phosphorylation site has been removed. Our data suggest that in the nervous system serotonin may negatively control IRK1 channel activity by direct PKA-mediated phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A soluble form of Alzheimer disease amyloid beta-protein (sA beta) is transported in the blood and cerebrospinal fluid mainly complexed with apolipoprotein J (apoJ). Using a well-characterized in situ perfused guinea pig brain model, we recently obtained preliminary evidence that apoJ facilitates transport of sA beta (1-40)-apoJ complexes across the blood-brain barrier and the blood-cerebrospinal fluid barrier, but the mechanisms remain poorly understood. In the present study, we examined the transport process in greater detail and investigated the possible role of glycoprotein 330 (gp330)/megalin, a receptor for multiple ligands, including apoJ. High-affinity transport systems with a Km of 0.2 and 0.5 nM were demonstrated for apoJ at the blood-brain barrier and the choroid epithelium in vivo, suggesting a specific receptor-mediated mechanism. The sA beta (1-40)-apoJ complex shared the same transport mechanism and exhibited 2.4- to 10.2-fold higher affinity than apoJ itself. Binding to microvessels, transport into brain parenchyma, and choroidal uptake of both apoJ and sA beta (1-40)-apoJ complexes were markedly inhibited (74-99%) in the presence of a monoclonal antibody to gp330/megalin and were virtually abolished by perfusion with the receptor-associated protein, which blocks binding of all known ligands to gp330. Western blot analysis of cerebral microvessels with the monoclonal antibody to gp330 revealed a protein with a mass identical to that in extracts of kidney membranes enriched with gp330/megalin, but in much lower concentration. The findings suggest that gp330/megalin mediates cellular uptake and transport of apoJ and sA beta (1-40)-apoJ complex at the cerebral vascular endothelium and choroid epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fermentation of nonabsorbed nutrients in the colon generates high concentrations of NH3/NH4+ in the colonic lumen. NH3 is a small, lipophilic neutral weak base that readily permeates almost all cell membranes, whereas its conjugate weak acid NH4+ generally crosses membranes much more slowly. It is not known how colonocytes maintain intracellular pH in the unusual acid-base environment of the colon, where permeant acid-base products of fermentation exist in high concentration. To address this issue, we hand dissected and perfused single, isolated crypts from rabbit proximal colon, adapting techniques from renal-tubule microperfusion. Crypt perfusion permits control of solutions at the apical (luminal) and basolateral (serosal) surfaces of crypt cells. We assessed apical- vs. basolateral-membrane transport of NH3/NH4+ by using fluorescent dyes and digital imaging to monitor intracellular pH of microvacuolated crypt cells as well as luminal pH. We found that, although the basolateral membranes have normal NH3/NH4+ permeability properties, there is no evidence for transport of either NH3 or NH4+ across the apical borders of these crypt cells. Disaggregating luminal mucus did not increase the transport of NH3/NH4+ across the apical border. We conclude that, compared to the basolateral membrane, the apical border of crypt colonocytes has a very low permeability-area product for NH3/NH4+. This barrier may represent an important adaptation for the survival of crypt cells in the environment of the colon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prolonged periods of low-frequency stimulation have been shown to produce a robust, long-term synaptic depression (LTD) in both hippocampus and visual cortex. In the present study we have examined the extent to which interactions among afferents govern the induction of homosynaptic LTD in young-adult rats in hippocampal region CA1 in vitro. Field excitatory postsynaptic potentials were assessed before and after conditioning stimulation consisting of two 10-min trains of low-frequency stimulation (LFS; 1 Hz) of the Schaffer collateral/commissural pathway. LFS at an intensity producing a 0.5-mV response did not produce significant synaptic depression. However, LFS administered at a higher intensity resulted in significant input-specific LTD of a 0.5-mV test response. Picrotoxin, which also facilitates depolarization of CA1 neurons, significantly enhanced the magnitude of LTD after LFS at 0.5 mV. In addition, LFS at 0.5 mV in normal perfusion medium (no picrotoxin) produced only small changes in synaptic efficacy when either of two converging pathways was conditioned separately but produced a robust LTD when both pathways were conditioned simultaneously. This cooperative LTD was reversibly blocked by prior administration of 100 microM DL-aminophosphonovaleric acid but not by 20 microM nimodipine. Taken together, these results suggest that cooperative interactions among afferents contribute to voltage-dependent processes underlying the induction of homosynaptic LTD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organelle movement along actin filaments has been demonstrated in dissociated squid axoplasm [Kurznetsov, S. A., Langford, G.M. & Weiss, D. G. (1992) Nature (London) 356, 722-725 and Bearer, E.L., DeGiorgis, J.A., Bodner, R.A., Kao, A.W. & Reese, T.S. (1993) Proc. Natl. Acad. Sci. USA 90, 11252-11256] but has not been shown to occur in intact neurons. Here we demonstrate that intracellular transport occurs along actin filament bundles in intact neuronal growth cones. We used video-enhanced differential interference contrast microscopy to observe intracellular transport in superior cervical ganglion neurons cultured under conditions that enhance the visibility of actin bundles within growth cone lamellipodia. Intracellular particles, ranging in size from < 0.5-1.5 microns, moved along linear structures (termed transport bundles) at an average maximum rate of 0.48 micron/sec. After particle movement had been viewed, cultures were preserved by rapid perfusion with chemical fixative. To determine whether particle transport occurred along actin, we then used fluorescence microscopy to correlate this movement with actin and microtubule distributions in the same growth cones. The observed transport bundles colocalized with actin but not with microtubules. The rates of particle movement and the association of moving particles with actin filament bundles suggest that myosins may participate in the transport of organelles (or other materials) in intact neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brain amyloid of Alzheimer disease (AD) may potentially be imaged in patients with AD by using neuroimaging technology and a radiolabeled form of the 40-residue beta-amyloid peptide A beta 1-40 that is enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier (BBB) in vivo. Transport of 125I-labeled A beta 1-40 (125I-A beta 1-40) through the BBB was found to be negligible by experiments with both an intravenous injection technique and an internal carotid artery perfusion method in anesthetized rats. In addition, 125I-A beta 1-40 was rapidly metabolized after either intravenous injection or internal carotid artery perfusion. BBB transport was increased and peripheral metabolism was decreased by conjugation of monobiotinylated 125I-A beta 1-40 to a vector-mediated drug delivery system, which consisted of a conjugate of streptavidin (SA) and the OX26 monoclonal antibody to the rat transferrin receptor, which undergoes receptor-mediated transcytosis through the BBB. The brain uptake, expressed as percent of injected dose delivered per gram of brain, of the 125I,bio-A beta 1-40/SA-OX26 conjugate was 0.15 +/- 0.01, a level that is 2-fold greater than the brain uptake of morphine. The binding of the 125I,bio-A beta 1-40/SA-OX26 conjugate to the amyloid of AD brain was demonstrated by both film and emulsion autoradiography performed on frozen sections of AD brain. Binding of the 125I,bio-A beta 1-40/SA-OX26 conjugate to the amyloid of AD brain was completely inhibited by high concentrations of unlabeled A beta 1-40. In conclusion, these studies show that BBB transport and access to amyloid within brain may be achieved by conjugation of A beta 1-40 to a vector-mediated BBB drug delivery system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-Methyl-D-aspartate (NMDA) receptors play an important role in the development of retinal axon arbors in the mammalian lateral geniculate nucleus (LGN). We investigated whether blockade of NMDA receptors in vivo or in vitro affects the dendritic development of LGN neurons during the period that retinogeniculate axons segregate into on-center and off-center sublaminae. Osmotic minipumps containing either the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV) or saline were implanted in ferret kits at postnatal day 14. After 1 week, LGN neurons were intracellularly injected with Lucifer yellow. Infusion of D-APV in vivo led to an increase in the number of branch points and in the density of dendritic spines compared with age-matched normal or saline-treated animals. To examine the time course of spine formation, crystals of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate were placed in the LGN in brain slices from 14- to 18-day-old ferrets. Labeled LGN cell dendrites were imaged on-line in living slices by confocal microscopy, with slices maintained either in normal perfusion medium or with the addition of D-APV or NMDA to the medium. Addition of D-APV in vitro at doses specific for blocking NMDA receptors led to a > 6-fold net increase in spine density compared with control or NMDA-treated slices. Spines appeared within a few hours of NMDA receptor blockade, indicating a rapid local response by LGN cells in the absence of NMDA receptor activation. Thus, activity-dependent structural changes in postsynaptic cells act together with changes in presynaptic arbors to shape projection patterns and specific retinogeniculate connections.