50 resultados para Patient in the terminal phase
Resumo:
Angioplasty procedures are increasingly used to reestablish blood flow in blocked atherosclerotic coronary arteries. A serious complication of these procedures is reocclusion (restenosis), which occurs in 30–50% of patients. Migration of coronary artery smooth muscle cells (CASMCs) to the site of injury caused by angioplasty and subsequent proliferation are suggested mechanisms of reocclusion. Using both cultured human CASMCs and coronary atherectomy tissues, we studied the roles of osteopontin (OPN) and one of its receptors, αvβ3 integrin, in the pathogenesis of coronary restenosis. We also measured the plasma levels of OPN before and after angioplasty and determined the effect of exogenous OPN on CASMC migration, extracellular matrix invasion, and proliferation. We found that cultured CASMCs during log phase of growth and smooth muscle cell layer of the coronary atherosclerotic tissues of patients express both OPN mRNA and protein at a significantly elevated level compared with controls. Interestingly, whereas the baseline plasma OPN levels in control samples were virtually undetectable, those in patient plasma were remarkably high. We also found that interaction of OPN with αvβ3 integrin, expressed on CASMCs, causes migration, extracellular matrix invasion, and proliferation. These effects were abolished when OPN or αvβ3 integrin gene expression in CASMCs was inhibited by specific antisense S-oligonucleotide treatment or OPN-αvβ3 interaction was blocked by treatment of CASMCs with antibodies against OPN or αvβ3 integrin. Our results demonstrate that OPN and αvβ3 integrin play critical roles in regulating cellular functions deemed essential for restenosis. In addition, these results raise the possibility that transient inhibition of OPN gene expression or blocking of OPN-αvβ3 interaction may provide a therapeutic approach to preventing restenosis.
Resumo:
Prosystemin is the 200-amino acid precursor of the 18-amino acid polypeptide defense hormone, systemin. Herein, we report that prosystemin was found to be as biologically active as systemin when assayed for proteinase inhibitor induction in young tomato plants and nearly as active in the alkalinization response in Lycopersicon esculentum suspension-cultured cells. Similar to many animal prohormones that harbor multiple signals, the systemin precursor contains five imperfect repetitive domains N-terminal to a single systemin domain. Whether the five repetitive domains contain defense signals has not been established. N-terminal deletions of prosystemin had little effect on its activity in tomato plants or suspension-cultured cells. Deletion of the C-terminal region of prosystemin containing the 18-amino acid systemin domain completely abolished its proteinase inhibitor induction and alkalinization activities. The apoplastic fluid from tomato leaves and the medium of cultured cells were analyzed for proteolytic activity that could process prosystemin to systemin. These experiments showed that proteolytic enzymes present in the apoplasm and medium could cleave prosystemin into large fragments, but the enzymes did not produce detectable levels of systemin. Additionally, inhibitors of these proteolytic enzymes did not affect the biological activity of prosystemin. The cumulative data indicated that prosystemin and/or large fragments of prosystemin can be active inducers of defense responses in both tomato leaves and suspension-cultured cells and that the only region of prosystemin that is responsible for activating the defense response resides in the systemin domain.
Resumo:
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.
Resumo:
Microtubules are dynamic structures whose proper rearrangement during the cell cycle is essential for the positioning of membranes during interphase and for chromosome segregation during mitosis. The previous discovery of a cyclin B/cdc2-activated microtubule-severing activity in M-phase Xenopus egg extracts suggested that a microtubule-severing protein might play an important role in cell cycle-dependent changes in microtubule dynamics and organization. However, the isolation of three different microtubule-severing proteins, p56, EF1α, and katanin, has only confused the issue because none of these proteins is directly activated by cyclin B/cdc2. Here we use immunodepletion with antibodies specific for a vertebrate katanin homologue to demonstrate that katanin is responsible for the majority of M-phase severing activity in Xenopus eggs. This result suggests that katanin is responsible for changes in microtubules occurring at mitosis. Immunofluorescence analysis demonstrated that katanin is concentrated at a microtubule-dependent structure at mitotic spindle poles in Xenopus A6 cells and in human fibroblasts, suggesting a specific role in microtubule disassembly at spindle poles. Surprisingly, katanin was also found in adult mouse brain, indicating that katanin may have other functions distinct from its mitotic role.
Resumo:
Unlike properly folded and assembled proteins, most misfolded and incompletely assembled proteins are retained in the endoplasmic reticulum of mammalian cells and degraded without transport to the Golgi complex. To analyze the mechanisms underlying this unique sorting process and its fidelity, the fate of C-terminally truncated fragments of influenza hemagglutinin was determined. An assortment of different fragments was generated by adding puromycin at low concentrations to influenza virus-infected tissue culture cells. Of the fragments generated, <2% was secreted, indicating that the system for detecting defects in newly synthesized proteins is quite stringent. The majority of secreted species corresponded to folding domains within the viral spike glycoprotein. The retained fragments acquired a partially folded structure with intrachain disulfide bonds and conformation-dependent antigenic epitopes. They associated with two lectin-like endoplasmic reticulum chaperones (calnexin and calreticulin) but not BiP/GRP78. Inhibition of the association with calnexin and calreticulin by the addition of castanospermine significantly increased fragment secretion. However, it also caused association with BiP/GRP78. These results indicated that the association with calnexin and calreticulin was involved in retaining the fragments. They also suggested that BiP/GRP78 could serve as a backup for calnexin and calreticulin in retaining the fragments. In summary, the results showed that the quality control system in the secretory pathway was efficient and sensitive to folding defects, and that it involved multiple interactions with endoplasmic reticulum chaperones.
Resumo:
Secondary amyloidosis is a common disease of water fowl and is characterized by the deposition of extracellular fibrils of amyloid A (AA) protein in the liver and certain other organs. Neither the normal role of serum amyloid A (SAA), a major acute phase response protein, nor the causes of secondary amyloidosis are well understood. To investigate a possible genetic contribution to disease susceptibility, we cloned and sequenced SAA cDNA derived from livers of domestic ducks. This revealed that the three C-terminal amino acids of SAA are removed during conversion to insoluble AA fibrils. Analysis of SAA cDNA sequences from several animals identified a distinct genetic dimorphism that may be relevant to susceptibility to secondary amyloid disease. The duck genome contained a single copy of the SAA gene that was expressed in liver and lung tissue of ducklings, even in the absence of induction of acute phase response. Genetic analysis of heterozygotes indicated that only one SAA allele is expressed in livers of adult birds. Immunofluorescence staining of livers from adult ducks displaying early symptoms of amyloidosis revealed what appear to be amyloid deposits within hepatocytes that are expressing unusually high amounts of SAA protein. This observation suggests that intracellular deposition of AA may represent an early event during development of secondary amyloidosis in older birds.
Resumo:
The Chondrichthyes (cartilaginous fishes) are commonly accepted as being sister group to the other extant Gnathostomata (jawed vertebrates). To clarify gnathostome relationships and to aid in resolving and dating the major piscine divergences, we have sequenced the complete mtDNA of the starry skate and have included it in phylogenetic analysis along with three squalomorph chondrichthyans—the common dogfish, the spiny dogfish, and the star spotted dogfish—and a number of bony fishes and amniotes. The direction of evolution within the gnathostome tree was established by rooting it with the most closely related non-gnathostome outgroup, the sea lamprey, as well as with some more distantly related taxa. The analyses placed the chondrichthyans in a terminal position in the piscine tree. These findings, which also suggest that the origin of the amniote lineage is older than the age of the oldest extant bony fishes (the lungfishes), challenge the evolutionary direction of several morphological characters that have been used in reconstructing gnathostome relationships. Applying as a calibration point the age of the oldest lungfish fossils, 400 million years, the molecular estimate placed the squalomorph/batomorph divergence at ≈190 million years before present. This dating is consistent with the occurrence of the earliest batomorph (skates and rays) fossils in the paleontological record. The split between gnathostome fishes and the amniote lineage was dated at ≈420 million years before present.
Resumo:
Across the boreal forest of North America, lynx populations undergo 10-year cycles. Analysis of 21 time series from 1821 to the present demonstrates that these fluctuations are generated by nonlinear processes with regulatory delays. Trophic interactions between lynx and hares cause delayed density-dependent regulation of lynx population growth. The nonlinearity, in contrast, appears to arise from phase dependencies in hunting success by lynx through the cycle. Using a combined approach of empirical, statistical, and mathematical modeling, we highlight how shifts in trophic interactions between the lynx and the hare generate the nonlinear process primarily by shifting functional response curves during the increase and the decrease phases.
Resumo:
The respiratory effects of dexmedetomidine were retrospectively examined in 33 postsurgical patients involved in a randomised, placebo-controlled trial after extubation in the intensive care unit (ICU). Morphine requirements were reduced by over 50% in patients receiving dexmedetomidine. There were no differences in respiratory rates, oxygen saturations, arterial pH and arterial partial carbon dioxide tension (PaCO2) between the groups. Interestingly the arterial partial oxygen tension (PaO2) : fractional inspired oxygen (FIO2) ratios were statistically significantly higher in the dexmedetomidine group. Dexmedetomidine provides important postsurgical analgesia and appears to have no clinically important adverse effects on respiration in the surgical patient who requires intensive care.
Resumo:
Pierisin-1 is an 850-aa cytotoxic protein found in the cabbage butterfly, Pieris rapae, and has been suggested to consist of an N-terminal region with ADP-ribosyltransferase domain and of a C-terminal region that might have a receptor-binding domain. To elucidate the role of each region, we investigated the functions of various fragments of pierisin-1. In vitro expressed polypeptide consisting of amino acid residues 1–233 or 234–850 of pierisin-1 alone did not show cytotoxicity against human cervical carcinoma HeLa cells. However, the presence of both polypeptides in the culture medium showed some of the original cytotoxic activity. Introduction of the N-terminal polypeptide alone by electroporation also induced cell death in HeLa cells, and even in the mouse melanoma MEB4 cells insensitive to pierisin-1. Thus, the N-terminal region has a principal role in the cytotoxicity of pierisin-1 inside mammalian cells. Analyses of incorporated pierisin-1 indicated that the entire protein, regardless of whether it consisted of a single polypeptide or two separate N- and C-terminal polypeptides, was incorporated into HeLa cells. However, neither of the terminal polypeptides was incorporated when each polypeptide was present separately. These findings indicate that the C-terminal region is important for the incorporation of pierisin-1. Moreover, presence of receptor for pierisin-1 in the lipid fraction of cell membrane was suggested. The cytotoxic effects of pierisin-1 were enhanced by previous treatment with trypsin, producing “nicked” pierisin-1. Generation of the N-terminal fragment in HeLa cells was detected after application of intact entire molecule of pierisin-1. From the above observations, it is suggested that after incorporation of pierisin-1 into the cell by interaction of its C-terminal region with the receptor in the cell membrane, the entire protein is cleaved into the N- and C-terminal fragments with intracellular protease, and the N-terminal fragment then exhibits cytotoxicity.
Resumo:
Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occured at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin β1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin β1 and fibronectin in a MEK-ERK–dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.
Resumo:
Cross-linking of the high-affinity IgE receptor (FcɛRI) on mast cells with IgE and multivalent antigen triggers mitogen-activated protein (MAP) kinase activation and cytokine gene expression. We report here that MAP kinase kinase 4 (MKK4) gene disruption does not affect either MAP kinase activation or cytokine gene expression in response to cross-linking of FcɛRI in embryonic stem cell-derived mast cells. MKK7 is activated in response to cross-linking of FcɛRI, and this activation is inhibited by MAP/ERK kinase (MEK) kinase 2 (MEKK2) gene disruption. In addition, expression of kinase-inactive MKK7 in the murine mast cell line MC/9 inhibits c-Jun NH2-terminal kinase (JNK) activation in response to cross-linking of FcɛRI, whereas expression of kinase-inactive MKK4 does not affect JNK activation by this stimulus. However, FcɛRI-induced activation of the tumor necrosis factor-α (TNF-α) gene promoter is not affected by expression of kinase-inactive MKK7. We describe an alternative pathway by which MEKK2 activates MEK5 and big MAP kinase1/extracellular signal-regulated kinase 5 in addition to MKK7 and JNK, and interruption of this pathway inhibits TNF-α promoter activation. These findings suggest that JNK activation by antigen cross-linking is dependent on the MEKK2-MKK7 pathway, and cytokine production in mast cells is regulated in part by the signaling complex MEKK2-MEK5-ERK5.
Resumo:
It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II.
Resumo:
We describe a mouse model in which p27Kip1 transgene expression is spatially restricted to the central nervous system neuroepithelium and temporally controlled with doxycycline. Transgene-specific transcripts are detectable within 6 h of doxycycline administration, and maximum nonlethal expression is approached within 12 h. After 18–26 h of transgene expression, the G1 phase of the cell cycle is estimated to increase from 9 to 13 h in the neocortical neuroepithelium, the maximum G1 phase length attainable in this proliferative population in normal mice. Thus our data establish a direct link between p27Kip1 and control of G1 phase length in the mammalian central nervous system and unveil intrinsic mechanisms that constrain the G1 phase length to a putative physiological maximum despite ongoing p27Kip1 transgene expression.