22 resultados para PROTEIN STABILIZATION
Resumo:
We present a systematic approach to minimizing the Z-domain of protein A, a three-helix bundle (59 residues total) that binds tightly (Kd = 10 nM) to the Fc portion of an immunoglobin IgG1. Despite the fact that all the contacts seen in the x-ray structure of the complex with the IgG are derived from residues in the first two helices, when helix 3 is deleted, binding affinity is reduced > 10(5)-fold (Kd > 1 mM). By using structure-based design and phage display methods, we have iteratively improved the stability and binding affinity for a two-helix derivative, 33 residues in length, such that it binds IgG1, with a Kd of 43 nM. This was accomplished by stepwise selection of random mutations from three regions of the truncated Z-peptide: the 4 hydrophobic residues from helix 1 and helix 2 that contacted helix 3 (the exoface), followed by 5 residues between helix 1 and helix 2 (the intraface), and lastly by 19 residues at or near the interface that interacts with Fc (the interface). As selected mutations from each region were compiled (12 in total), they led to progressive increases in affinity for IgG, and concomitant increases in alpha-helical content reflecting increased stabilization of the two-helix scaffold. Thus, by sequential increases in the stability of the structure and improvements in the quality of the intermolecular contacts, one can reduce larger binding domains to smaller ones. Such mini-protein binding domains are more amenable to synthetic chemistry and thus may be useful starting points for the design of smaller organic mimics. Smaller binding motifs also provide simplified and more tractable models for understanding determinants of protein function and stability.
Resumo:
Rab8 is a small GTP-binding protein that plays a role in vesicular transport from the trans-Golgi network to the basolateral plasma membrane in polarized epithelial cells (MDCK), and to the dendritic surface in hippocampal neurons. As is the case for most other rab proteins, the precise molecular interactions by which rab8 carries out its function remain to be elucidated. Here we report the identification and the complete cDNA-derived amino acid sequence of a murine rab8-interacting protein (rab8ip) that specifically interacts with rab8 in a GTP-dependent manner. Rab8ip displays 93% identity with the GC kinase, a serine/threonine protein kinase recently identified in human lymphoid tissue that is activated in the stress response. Like the GC kinase, rab8ip has protein kinase activity manifested by autophosphorylation and phosphorylation of the classical serine/threonine protein kinase substrates, myelin basic protein and casein. When coexpressed in transfected 293T cells, rab8 and the rab8ip/GC kinase formed a complex that could be recovered by immunoprecipitation with antibodies to rab8. Cell fractionation and immunofluorescence analyses indicate that in MDCK cells endogenous rab8ip is present both in the cytosol and as a peripheral membrane protein concentrated in the Golgi region and basolateral plasma membrane domains, sites where rab8 itself is also located. In light of recent evidence that rab proteins may act by promoting the stabilization of SNARE complexes, the specific GTP-dependent association of rab8 with the rab8ip/GC kinase raises the possibility that rab-regulated protein phosphorylation is important for vesicle targeting or fusion. Moreover, the rab8ip/GC kinase may serve to modulate secretion in response to stress stimuli.
Resumo:
Engineering site-specific amino acid substitutions into the protein-tyrosine phosphatase (PTPase) PTP1 and the dual-specific vaccinia H1-related phosphatase (VHR), has kinetically isolated the two chemical steps of the reaction and provided a rare opportunity for examining transition states and directly observing the phosphoenzyme intermediate. Changing serine to alanine in the active-site sequence motif HCXXGXXRS shifted the rate-limiting step from intermediate formation to intermediate hydrolysis. Using phosphorus 31P NMR, the covalent thiol-phosphate intermediate was directly observed during catalytic turnover. The importance of the conserved aspartic acid (D92 in VHR and D181 in PTP1) in both chemical steps was established. Kinetic analysis of D92N and D181N mutants indicated that aspartic acid acts as a general acid by protonating the leaving-group phenolic oxygen. Structure-reactivity experiments with native and aspartate mutant enzymes established that proton transfer is concomitant with P-O cleavage, such that no charge develops on the phenolic oxygen. Steady- and presteady-state kinetics, as well as NMR analysis of the double mutant D92N/S131A (VHR), suggested that the conserved aspartic acid functions as a general base during intermediate hydrolysis. As a general base, aspartate would activate a water molecule to facilitate nucleophilic attack. The amino acids involved in transition-state stabilization for cysteinylphosphate hydrolysis were confirmed by the x-ray structure of the Yersinia PTPase complexed with vanadate, a transition-state mimic that binds covalently to the active-site cysteine. Consistent with the NMR, x-ray, biochemical, and kinetic data, a unifying mechanism for catalysis is proposed.
Resumo:
A protein complex involved in apolipoprotein B (apoB) RNA editing, referred to as AUX240 (auxiliary factor containing p240), has been identified through the production of monoclonal antibodies against in vitro assembled 27S editosomes. The 240-kDa protein antigen of AUX240 colocalized with editosome complexes on immunoblots of native gels. Immunoadsorbed extracts were impaired in their ability to assemble editosomes beyond early intermediates and in their ability to edit apoB RNA efficiently. Supplementation of adsorbed extract with AUX240 restored both editosome assembly and editing activities. Several proteins, in addition to p240, ranging in molecular mass from 150 to 45 kDa coimmunopurify as AUX240 under stringent wash conditions. The activity of the catalytic subunit of the editosome APOBEC-1 and mooring sequence RNA binding proteins of 66 and 44 kDa could not be demonstrated in AUX240. The data suggest that p240 and associated proteins constitute an auxiliary factor required for efficient apoB RNA editing. We propose that the role of AUX240 may be regulatory and involve mediation or stabilization of interactions between APOBEC-1 subunits and editing site recognition proteins leading the assembly of the rat liver C/U editosome.
Resumo:
Structurally neighboring residues are categorized according to their separation in the primary sequence as proximal (1-4 positions apart) and otherwise distal, which in turn is divided into near (5-20 positions), far (21-50 positions), very far ( > 50 positions), and interchain (from different chains of the same structure). These categories describe the linear distance histogram (LDH) for three-dimensional neighboring residue types. Among the main results are the following: (i) nearest-neighbor hydrophobic residues tend to be increasingly distally separated in the linear sequence, thus most often connecting distinct secondary structure units. (ii) The LDHs of oppositely charged nearest-neighbors emphasize proximal positions with a subsidiary maximum for very far positions. (iii) Cysteine-cysteine structural interactions rarely involve proximal positions. (iv) The greatest numbers of interchain specific nearest-neighbors in protein structures are composed of oppositely charged residues. (v) The largest fraction of side-chain neighboring residues from beta-strands involves near positions, emphasizing associations between consecutive strands. (vi) Exposed residue pairs are predominantly located in proximal linear positions, while buried residue pairs principally correspond to far or very far distal positions. The results are principally invariant to protein sizes, amino acid usages, linear distance normalizations, and over- and underrepresentations among nearest-neighbor types. Interpretations and hypotheses concerning the LDHs, particularly those of hydrophobic and charged pairings, are discussed with respect to protein stability and functionality. The pronounced occurrence of oppositely charged interchain contacts is consistent with many observations on protein complexes where multichain stabilization is facilitated by electrostatic interactions.
Resumo:
The progress toward single-dose vaccines has been limited by the poor solid-state stability of vaccine antigens within controlled-release polymers, such as poly(lactide-co-glycolide). For example, herein we report that lyophilized tetanus toxoid aggregates during incubation at 37 degrees C and elevated humidity--i.e., conditions relevant to its release from such systems. The mechanism and extent of this aggregation are dependent on the moisture level in the solid protein, with maximum aggregation observed at intermediate moisture contents. The main aggregation pathway is consistent with formaldehyde-mediated cross-linking, where reactive electrophiles created and stored in the vaccine upon formalinization (exposure to formaldehyde during vaccine preparation) react with nucleophiles of a second vaccine molecule to form intermolecular cross-links. This process is inhibited by the following: (i) succinylating the vaccine to block reactive amino groups; (ii) treating the vaccine with sodium cyanoborohydride, which presumably reduces Schiff bases and some other electrophiles created upon formalinization; and (iii) addition of low-molecular-weight excipients, particularly sorbitol. The moisture-induced aggregation of another formalinized vaccine, diphtheria toxoid, is also retarded by succinylation, suggesting the generality of this mechanism for formalinized vaccines. Hence, mechanistic stability studies of the type described herein may be important for the development of effective single-dose vaccines.
Resumo:
When secY is overexpressed over secE or secE is underexpressed, a fraction of SecY protein is rapidly degraded in vivo. This proteolysis was unaffected in previously described protease-defective mutants examined. We found, however, that some mutations in ftsH, encoding a membrane protein that belongs to the AAA (ATPase associated with a variety of cellular activities) family, stabilized oversynthesized SecY. This stabilization was due to a loss of FtsH function, and overproduction of the wild-type FtsH protein accelerated the degradation. The ftsH mutations also suppressed, by alleviating proteolysis of an altered form of SecY, the temperature sensitivity of the secY24 mutation, which alters SecY such that its interaction with SecE is weakened and it is destabilized at 42 degrees C. We were able to isolate a number of additional mutants with decreased ftsH expression or with an altered form of FtsH using selection/screening based on suppression of secY24 and stabilization of oversynthesized SecY. These results indicate that FtsH is required for degradation of SecY. Overproduction of SecY in the ftsH mutant cells proved to deleteriously affect cell growth and protein export, suggesting that elimination of uncomplexed SecY is important for optimum protein translocation and for the integrity of the membrane. The primary role of FtsH is discussed in light of the quite pleiotropic mutational effects, which now include stabilization of uncomplexed SecY.