25 resultados para PROTEÍNAS DE LIGAÇÃO A GTP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rab8 is a small GTP-binding protein that plays a role in vesicular transport from the trans-Golgi network to the basolateral plasma membrane in polarized epithelial cells (MDCK), and to the dendritic surface in hippocampal neurons. As is the case for most other rab proteins, the precise molecular interactions by which rab8 carries out its function remain to be elucidated. Here we report the identification and the complete cDNA-derived amino acid sequence of a murine rab8-interacting protein (rab8ip) that specifically interacts with rab8 in a GTP-dependent manner. Rab8ip displays 93% identity with the GC kinase, a serine/threonine protein kinase recently identified in human lymphoid tissue that is activated in the stress response. Like the GC kinase, rab8ip has protein kinase activity manifested by autophosphorylation and phosphorylation of the classical serine/threonine protein kinase substrates, myelin basic protein and casein. When coexpressed in transfected 293T cells, rab8 and the rab8ip/GC kinase formed a complex that could be recovered by immunoprecipitation with antibodies to rab8. Cell fractionation and immunofluorescence analyses indicate that in MDCK cells endogenous rab8ip is present both in the cytosol and as a peripheral membrane protein concentrated in the Golgi region and basolateral plasma membrane domains, sites where rab8 itself is also located. In light of recent evidence that rab proteins may act by promoting the stabilization of SNARE complexes, the specific GTP-dependent association of rab8 with the rab8ip/GC kinase raises the possibility that rab-regulated protein phosphorylation is important for vesicle targeting or fusion. Moreover, the rab8ip/GC kinase may serve to modulate secretion in response to stress stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha subunits of the heterotrimeric guanine nucleotide-binding proteins (G proteins) hydrolyze GTP at a rate significantly higher than do most members of the Ras family of approximatelly 20-kDa GTP-binding proteins, which depend on a GTPase-activating protein (GAP) for acceleration of GTP hydrolysis. It has been demonstrated that an inserted domain in the G-protein alpha subunit, not present in the much smaller Ras-like proteins, is responsible for this difference [Markby, D. W., Onrust, R. & Bourne, H. R. (1993) Science 262, 1895-1900]. We report here that ARD1, a 64-kDa protein with an 18-kDa carboxyl-terminal ADP-ribosylation factor (ARF) domain, exhibited significant GTPase activity, whereas the ARF domain, expressed as a recombinant protein in Escherichia coli, did not. Addition of the 46-kDa amino-terminal extension (similarly synthesized in E. coli) to the GTP-binding ARF-domain of ARD1 enhanced GTPase activity and inhibited GDP dissociation. The kinetic properties of mixtures of the ARF and non-ARF domains were similar to those of an intact recombinant ARD1. Physical association of the two proteins was demonstrated directly by gel filtration and by using the immobilized non-ARF domain. Thus, like the alpha subunits of heterotrimeric G proteins, ARD1 appears to consist of two domains that interact to regulate the biological activity of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GTP cyclohydrolase I of Escherichia coli is a torus-shaped homodecamer with D5 symmetry and catalyzes a complex ring expansion reaction conducive to the formation of dihydroneopterin triphosphate from GTP. The x-ray structure of a complex of the enzyme with the substrate analog, dGTP, bound at the active site was determined at a resolution of 3 A. In the decamer, 10 equivalent active sites are present, each of which contains a 10-A deep pocket formed by surface areas of 3 adjacent subunits. The substrate forms a complex hydrogen bond network with the protein. Active site residues were modified by site-directed mutagenesis, and enzyme activities of the mutant proteins were measured. On this basis, a mechanism of the enzyme-catalyzed reaction is proposed. Cleavage of the imidazole ring is initiated by protonation of N7 by His-179 followed by the attack of water at C8 of the purine system. Cystine Cys-110 Cys-181 may be involved in this reaction step. Opening of the imidazole ring may be in concert with cleavage of the furanose ring to generate a Schiff's base from the glycoside. The gamma-phosphate of GTP may be involved in the subsequent Amadori rearrangement of the carbohydrate side chain by activating the hydroxyl group of Ser-135.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular cellulase activity is readily induced when the chestnut blight fungus Cryphonectria parasitica is grown on cellulose substrate as the sole carbon source. However, an isogenic C. parasitica strain rendered hypovirulent due to hypovirus infection failed to secrete detectable cellulase activity when grown under parallel conditions. Efforts to identify C. parasitica cellulase-encoding genes resulted in the cloning of a cellobiohydrolase (exoglucanase, EC 3.2.1.91) gene designated chb-1. Northern blot analysis revealed an increase in cbh-1 transcript accumulation in a virus-free virulent C. parasitica strain concomitant with the induction of extracellular cellulase activity. In contrast, induction of cbh-1 transcript accumulation was suppressed in an isogenic hypovirus-infected strain. Significantly, virus-free C. parasitica strains rendered hypovirulent by transgenic cosuppression of a GTP-binding protein alpha subunit were also found to be deficient in the induction of cbh-1 transcript accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Philadelphia chromosome-positive leukemias result from the fusion of the BCR and ABL genes, which generates a functional chimeric molecule. The Abr protein is very similar to Bcr but lacks a structural domain which may influence its biological regulatory capabilities. Both Abr and Bcr have a GTPase-activating protein (GAP) domain similar to those found in other proteins that stimulate GTP hydrolysis by members of the Rho family of GTP-binding proteins, as well as a region of homology with the guanine nucleotide dissociation-stimulating domain of the DBL oncogene product. We purified as recombinant fusion proteins the GAP- and Dbl-homology domains of both Abr and Bcr. The Dbl-homology domains of Bcr and Abr were active in stimulating GTP binding to CDC42Hs, RhoA, Rac1, and Rac2 (rank order, CDC42Hs > RhoA > Rac1 = Rac2) but were inactive toward Rap1A and Ha-Ras. Both Bcr and Abr acted as GAPs for Rac1, Rac2, and CDC42Hs but were inactive toward RhoA, Rap1A, and Ha-Ras. Each individual domain bound in a noncompetitive manner to GTP-binding protein substrates. These data suggest the multifunctional Bcr and Abr proteins might interact simultaneously and/or sequentially with members of the Rho family to regulate and coordinate cellular signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid endocytosis (RE) occurs immediately after an exocytotic burst in adrenal chromaffin cells. Capacitance measurements of endoocytosis reveal that recovery of membrane is a biphasic process that is complete within 20 sec. The ultimate extent of membrane retrieval is precisely controlled and capacitance invariably returns to its prestimulation value. The mechanism of RE specifically requires intracellular Ca2+; Sr2+ and Ba2+ do not substitute, although all three cations support secretion. Thus the divalent cation receptors for RE and exocytosis must be distinct molecules. RE is dependent on GTP hydrolysis; it is blocked by GTP removal or replacement with guanosine 5'-[gamma-thio]triphosphate. In the presence of GTP, multiple rounds of secretion followed by RE could be elicited from the same cell. RE requires participation of dynamin, a guanine nucleotide binding protein, as revealed by intracellular immunological antagonism of this protein. Intact microtubules may be essential, as nocodazole also blocked RE. Whereas anti-dynamin antibodies blocked RE, anti-clathrin antibodies did not, suggesting that clathrin-coated vesicles are not involved in this form of endocytosis. RE may represent the initial step in the rapid recycling of secretory granules in the chromaffin cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brefeldin A, a fungal metabolite that inhibits membrane transport, induces the mono(ADP-ribosyl)ation of two cytosolic proteins of 38 and 50 kDa as judged by SDS/PAGE. The 38-kDa substrate has been previously identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report that the 50-kDa BFA-induced ADP-ribosylated substrate (BARS-50) has native forms of 170 and 130 kDa, as determined by gel filtration of rat brain cytosol, indicating that BARS-50 might exist as a multimeric complex. BARS-50 can bind GTP, as indicated by blot-overlay studies with [alpha-32P]GTP and by photoaffinity labeling with guanosine 5'-[gamma-32P] [beta,gamma-(4-azidoanilido)]triphosphate. Moreover, ADP-ribosylation of BARS-50 was completely inhibited by the beta gamma subunit complex of G proteins, while the ADP-ribosylation of GAPDH was unmodified, indicating that this effect was due to an interaction of the beta gamma complex with BARS-50, rather than with the ADP-ribosylating enzyme. Two-dimensional gel electrophoresis and immunoblot analysis shows that BARS-50 is a group of closely related proteins that appear to be different from all the known GTP-binding proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YPT/rab proteins are ras-like small GTP-binding proteins that serve as key regulators of vesicular transport. The mRNA levels of two YPT/rab genes in pea plants are repressed by light, with the process mediated by phytochrome. Here, we examined the mRNA expression and the location of the two proteins, pra2- and pra3-encoded proteins, using monoclonal antibodies. The pra2 and pra3 mRNA levels were highest in the stems of dark-grown seedlings. The corresponding proteins were found in the cytosol and the membranes of the stems. Most of the pra2 protein was in the growing internodes, especially in the growing region, but the pra3 protein was widespread. These results suggest that the pra2 protein is important for vesicular transport in stems, possibly contributing to stem growth in the dark, and that the pra3 protein is important for general vesicular transport. The amounts of pra2 and pra3 proteins decreased with illumination. The decrease in these proteins may be related to the phytochrome-dependent inhibition of stem growth that occurs in etiolated pea seedlings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small GTP-binding proteins play a critical role in the regulation of a range of cellular processes--including growth, differentiation, and intracellular transportation. Previously, we isolated a gene, rgp1, encoding a small GTP-binding protein, by differential screening of a rice cDNA library with probe DNAs from rice tissues treated with or without 5-azacytidine, a powerful inhibitor of DNA methylation. To determine the physiological role of rgp1, the coding region was introduced into tobacco plants. Transformants, with rgp1 in either sense or antisense orientations, showed distinct phenotypic changes with reduced apical dominance, dwarfism, and abnormal flower development. These abnormal phenotypes appeared to be associated with the higher levels of endogenous cytokinins that were 6-fold those of wild-type plants. In addition, the transgenic plants produced salicylic acid and salicylic acid-beta-glucoside in an unusual response to wounding, thus conferring increased resistance to tobacco mosaic virus infection. In normal plants, the wound- and pathogen-induced signal-transduction pathways are considered to function independently. However, the wound induction of salicylic acid in the transgenic plants suggests that expression of rgp1 somehow interfered with the normal signaling pathways and resulted in cross-signaling between these distinct transduction systems. The results imply that the defense signal-transduction system consists of a complicated and finely tuned network of several regulatory factors, including cytokinins, salicylic acid, and small GTP-binding proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclei of digitonin-permeabilized cells that had been preloaded with a model transport substrate in a cytosol-dependent import reaction were subsequently incubated to investigate which conditions would result in export of transport substrate. We found that up to 80% of the imported substrate was exported when recombinant human Ran and GTP were present in the export reaction. Ran-mediated export was inhibited by nonhydrolyzable GTP analogs and also by wheat germ agglutinin but was unaffected by a nonhydrolyzable ATP analog. Moreover, a recombinant human Ran mutant that was deficient in its GTPase activity inhibited export. These data indicate that export of proteins from the nucleus requires Ran and GTP hydrolysis but not ATP hydrolysis. We also found that digitonin-permeabilized cells were depleted of their endogenous nuclear Ran, thus allowing detection of Ran as a limiting factor for export. In contrast, most endogenous karyopherin alpha was retained in nuclei of digitonin-permeabilized cells. Unexpectedly, exogenously added, fluorescently labeled Ran, although it accessed the nuclear interior, was found to dock at the nuclear rim in a punctate pattern, suggesting the existence of Ran-binding sites at the nuclear pore complex.