18 resultados para PHOTOLYSIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upon photolysis at 355 nm, dioxygen is released from a (mu-peroxo)(mu-hydroxo)bis[bis(bipyridyl)cobalt-(III)] complex in aqueous solutions and at physiological pH with a quantum yield of 0.04. The [Co(bpy)2(H2O)2]2+ (bpy = bipyridyl) photoproduct was generated on a nanosecond or faster time scale as determined by time-resolved optical absorption spectroscopy. A linear correspondence between the spectral changes and the oxygen production indicates that O2 is released on the same time scale. Oxyhemoglobin was formed from deoxyhemoglobin upon photodissociation of the (mu-peroxo) (mu-hydroxo)bis[bis(bipyridyl)cobalt(III)] complex, verifying that dioxygen is a primary photoproduct. This complex and other related compounds provide a method to study fast biological reactions involving O2, such as the reduction of dioxygen to water by cytochrome oxidase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton translocation experiments with intact cells of Halobacterium salinarium overproducing sensory rhodopsin I (SRI) revealed transport activity of SRI in a two-photon process. The vectoriality of proton translocation depends on pH, being outwardly directed above, and inwardly directed below, pH 5.7. Activation of the transport cycle requires excitation of the initial dark state of SRI, SRI590, to form the intermediate SRI380. Action spectra identify the photocycle intermediates SRI380 and SRI520 as the two photochemically reactive species in the outwardly directed transport process. As shown by flash photolysis experiments, SRI520 undergoes a so-far unknown photochemical reaction to SRI380 with a half-time of <200 micros. Mutation of SRI residue Asp-76, the residue which is equivalent to the proton acceptor Asp-85 in bacteriorhodopsin, to asparagine leads to inactivation of proton translocation. This demonstrates that the underlying mechanisms of proton transport in both retinal proteins share similar features. However, SRI is to our knowledge the first case where photochemical reactions between two thermally unstable photoproducts of a retinal protein constitute a catalytic ion transport cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetics of CO association with guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] and dissociation from carboxy guanylate cyclase have been studied at pH 7.5 by flash photolysis, yielding rate constants at 23 degrees C of 1.2 +/- 0.1 x 10(5) M-1.sec-1 and 28 +/- 2 sec-1, respectively. While the CO combination rate constant is the same as for the T state of hemoglobin, the CO dissociation rate constant is much higher than expected for a six-coordinate carboxyheme protein; yet the absorption spectrum is indicative of a six-coordinate heme. The two observations are reconciled by a reaction mechanism in which CO dissociation proceeds via a five-coordinate intermediate. This intermediate is structurally very similar to the five-coordinate nitrosyl heme derivative of guanylate cyclase and is presumably responsible for the observed 4-fold activation of guanylate cyclase by CO. Thus, we provide a model that explains enzyme activities of the nitrosyl and carboxy forms of the enzyme on the basis of a common mechanism.