20 resultados para PARTITION
Resumo:
A new approach to the analysis of metabolic pathways involving poorly water-soluble intermediates is proposed. It relies upon the ability of the hydrophobic intermediates formed by a sequence of intracellular reactions to cross the membrane(s) and partition between aqueous and organic phases, when cells are incubated in the presence of a nonpolar and nontoxic organic solvent. As a result of this thermodynamically driven efflux of the formed intermediates from the cell, they accumulate in the organic medium in sufficient quantities for GC-MS analysis and identification. This enables direct determination of the sequence of chemical reactions involved with no requirement for the isolation of each individual metabolite from a cell-free extract. The feasibility of the proposed methodology has been demonstrated by the elucidation of the biosynthesis of (R)-gamma-decalactone from (R)-ricinoleic acid catalyzed by the yeast Sporidiobolus ruinenii grown in the presence of decane. The corresponding 4-hydroxy-acid intermediates, formed in the course of beta-oxidation of (R)-ricinoleic acid, were simultaneously observed in a single experiment on the same chromatogram. Potential applications of this proposed methodology are briefly discussed.
Resumo:
Multiscale asymptotic methods developed previously to study macromechanical wave propagation in cochlear models are generalized here to include active control of a cochlear partition having three subpartitions, the basilar membrane, the reticular lamina, and the tectorial membrane. Activation of outer hair cells by stereocilia displacement and/or by lateral wall stretching result in a frequency-dependent force acting between the reticular lamina and basilar membrane. Wavelength-dependent fluid loads are estimated by using the unsteady Stokes' equations, except in the narrow gap between the tectorial membrane and reticular lamina, where lubrication theory is appropriate. The local wavenumber and subpartition amplitude ratios are determined from the zeroth order equations of motion. A solvability relation for the first order equations of motion determines the subpartition amplitudes. The main findings are as follows: The reticular lamina and tectorial membrane move in unison with essentially no squeezing of the gap; an active force level consistent with measurements on isolated outer hair cells can provide a 35-dB amplification and sharpening of subpartition waveforms by delaying dissipation and allowing a greater structural resonance to occur before the wave is cut off; however, previously postulated activity mechanisms for single partition models cannot achieve sharp enough tuning in subpartitioned models.
Resumo:
During meiosis in Saccharomyces cerevisiae, the first chemical step in homologous recombination is the occurrence of site-specific DNA double-strand breaks (DSBs). In wild-type cells, these breaks undergo resection of their 5' strand termini to yield molecules with 3' single-stranded tails. We have further characterized the breaks that accumulate in rad50S mutant stains defective in DSB resection. We find that these DSBs are tightly associated with protein via what appears to be a covalent linkage. When genomic DNA is prepared from meiotic rad50S cultures without protease treatment steps, the restriction fragments diagnostic of DSBs selectively partition to the organic-aqueous interphase in phenol extractions and band at lower than normal density in CsCl density gradients. Selective partitioning and decreased buoyant density are abolished if the DNA is treated with proteinase K prior to analysis. Similar results are obtained with sae2-1 mutant strains, which have phenotypes identical to rad50S mutants. The protein is bound specifically to the 5' strand termini of DSBs and is present at both 5' ends in at least a fraction of breaks. The stability of the complex to various protein denaturants and the strand specificity of the attachment are most consistent with a covalent linkage to DSB termini. We propose that the DSB-associated protein is the catalytic subunit of the meiotic recombination initiation nuclease and that it cleaves DNA via a covalent protein-DNA intermediate.
Resumo:
Geographical patterns of mtDNA variation were studied in 12 Italian samples (1072 individuals) by two different spatial autocorrelation methods. Separate analyses of the frequencies of 12 restriction morphs show North-South clines, differences between Sardinia and the mainland populations, and the effects of isolation by distance. A recently developed autocorrelation statistic summarizing molecular similarity at all sites (AIDA; autocorrelation index for DNA analysis) confirms the presence of a clinical pattern; differences between random pairs of haplotypes tend to increase with their geographical distance. The partition of gene diversity, however, reveals that most variability occurs within populations, whereas differences between populations are minor (GST = 0.057). When the data from the 12 samples are pooled, two descriptors of genetic variability (number of polymorphic sites and average sequence difference between pairs of individuals) do not behave as expected under neutrality. The presence of clinal patterns, Tajima's tests, and a simulation experiment agree in suggesting that population sizes increased rapidly in Italy and Sicily but not necessarily so in Sardinia. The distribution of pairwise sequence differences in the Italian peninsula (excluding Sardinia) permits a tentative location of the demographic increase between 8000 and 20,500 years ago. These dates are consistent with archaeological estimates of two distinct expansion processes, occurring, respectively, in the Neolithic and after the last glacial maximum in the Paleolithic. Conversely, there is no genetic evidence that such processes have had a major impact on the Sardinian population.
Resumo:
We present an analysis that synthesizes information on the sequence, structure, and motifs of antigenic peptides, which previously appeared to be in conflict. Fourier analysis of T-cell antigenic peptides indicates a periodic variation in amino acid polarities of 3-3.6 residues per period, suggesting an amphipathic alpha-helical structure. However, the diffraction patterns of major histocompatibility complex (MHC) molecules indicate that their ligands are in an extended non-alpha-helical conformation. We present two mutually consistent structural explanations for the source of the alpha-helical periodicity, based on an observation that the side chains of MHC-bound peptides generally partition with hydrophobic (hydrophilic) side chains pointing into (out of) the cleft. First, an analysis of haplotype-dependent peptide motifs indicates that the locations of their defining residues tend to force a period 3-4 variation in hydrophobicity along the peptide sequence, in a manner consistent with the spacing of pockets in the MHC. Second, recent crystallographic determination of the structure of a peptide bound to a class II MHC molecule reveals an extended but regularly twisted peptide with a rotation angle of about 130 degrees. We show that similar structures with rotation angles of 100-130 degrees are energetically acceptable and also span the length of the MHC cleft. These results provide a sound physical chemical and structural basis for the existence of a haplotype-independent antigenic motif which can be particularly important in limiting the search time for antigenic peptides.