110 resultados para P2 receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several classes of voltage-gated Ca2+ channels (VGCCs) are inhibited by G proteins activated by receptors for neurotransmitters and neuromodulatory peptides. Evidence has accumulated to indicate that for non-L-type Ca2+ channels the executing arm of the activated G protein is its βγ dimer (Gβγ). We report below the existence of two Gβγ-binding sites on the A-, B-, and E-type α1 subunits that form non-L-type Ca2+ channels. One, reported previously, is in loop 1 connecting transmembrane domains I and II. The second is located approximately in the middle of the ca. 600-aa-long C-terminal tails. Both Gβγ-binding regions also bind the Ca2+ channel β subunit (CCβ), which, when overexpressed, interferes with inhibition by activated G proteins. Replacement in α1E of loop 1 with that of the G protein-insensitive and Gβγ-binding-negative loop 1 of α1C did not abolish inhibition by G proteins, but the exchange of the α1E C terminus with that of α1C did. This and properties of α1E C-terminal truncations indicated that the Gβγ-binding site mediating the inhibition of Ca2+ channel activity is the one in the C terminus. Binding of Gβγ to this site was inhibited by an α1-binding domain of CCβ, thus providing an explanation for the functional antagonism existing between CCβ and G protein inhibition. The data do not support proposals that Gβγ inhibits α1 function by interacting with the site located in the loop I–II linker. These results define the molecular mechanism by which presynaptic G protein-coupled receptors inhibit neurotransmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global long-term potentiation (LTP) was induced in organotypic hippocampal slice cultures by a brief application of 10 mM glycine. Glycine-induced LTP was occluded by previous theta burst stimulation-induced potentiation, indicating that both phenomena share similar cellular processes. Glycine-induced LTP was associated with increased [3H]α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) binding in membrane fractions as well as increased amount of a selective spectrin breakdown product generated by calpain-mediated spectrin proteolysis. Antibodies against the C-terminal (C-Ab) and N-terminal (N-Ab) domains of GluR1 subunits were used to evaluate structural changes in AMPA receptor properties resulting from glycine-induced LTP. No quantitative or qualitative changes were observed in Western blots from membrane fractions prepared from glycine-treated slices with C-Ab. In contrast, Western blots stained with N-Ab revealed the formation of a 98-kDa species of GluR1 subunits as well as an increased amount of immunoreactivity after glycine-induced LTP. The amount of spectrin breakdown product was positively correlated with the amount of the 98-kDa species of GluR1 after glycine treatment. Functional modifications of AMPA receptors were evaluated by determining changes in the effect of pressure-applied AMPA on synaptic responses before and after glycine-induced LTP. Glycine treatment produced a significant increase in AMPA receptor function after potentiation that correlated with the degree of potentiation. The results indicate that LTP induction produces calpain activation, truncation of the C-Ab domain of GluR1 subunits of AMPA receptors, and increased AMPA receptor function. They also suggest that insertion of new receptors takes place after LTP induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-linked antigens on the surface of a motile cell cap at the trailing end of the cell. In Dictyostelium discoideum, myosin II null mutants have previously been reported to be unable to cap Con A receptors, although they are able to locomote. This finding implicated myosin II as an essential component of the capping mechanism, although not of the machinery for locomotion. Here we show that myosin II null mutants do cap Con A receptors, albeit less efficiently than does wild type. This shows that cap formation is not absolutely dependent on myosin II and that a close mechanistic relationship between capping, particle movement, and cell migration may still exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5-HT-moduline is an endogenous tetrapeptide [Leu-Ser-Ala-Leu (LSAL)] that was first isolated from bovine brain tissue. To understand the physiological role of this tetrapeptide, we studied the localization of 5-HT-moduline binding sites in rat and mouse brains. Quantitative data obtained with a gaseous detector of β-particles (β-imager) indicated that [3H]-5-HT-moduline bound specifically to rat brain sections with high affinity (Kd = 0.77 nM and Bmax = 0.26 dpm/mm2). Using film autoradiography in parallel, we found that 5-HT-moduline binding sites were expressed in a variety of rat and mouse brain structures. In 5-HT1B receptor knock-out mice, the specific binding of [3H]-5-HT-moduline was not different from background labeling, indicating that 5-HT-moduline targets are exclusively located on the 5-HT1B receptors. Although the distribution of 5-HT-moduline binding sites was similar to that of 5-HT1B receptors, they did not overlap totally. Differences in distribution patterns were found in regions containing either high levels of 5-HT1B receptors such as globus pallidus and subiculum that were poorly labeled or in other regions such as dentate gyrus of hippocampus and cortex where the relative density of 5-HT-moduline binding sites was higher than that of 5-HT1B receptors. In conclusion, our data, based on autoradiographic localization, indicate that 5-HT-moduline targets are located on 5-HT1B receptors present both on 5-HT afferents and postsynaptic neurons. By interacting specifically with 5-HT1B receptors, this tetrapeptide may play a pivotal role in pathological states such as stress that involves the dysfunction of 5-HT neurotransmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation of the highly conserved leucine residue (Leu-247) converts 5-hydroxytryptamine (5HT) from an antagonist into an agonist of neuronal homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We show here that acetylcholine (AcCho) activates two classes of single channels with conductances of 44 pS and 58 pS, similar to those activated by 5HT. However, the mean open time of AcCho-gated ion channels (11 ms) is briefer than that of 5HT-gated ion channels (18 ms). Furthermore, whereas the open time of AcCho channels lengthens with hyperpolarization, that of 5HT channels is decreased. In voltage-clamped oocytes, the apparent affinity of the α7 mutant receptor for 5HT is not modified by the presence of dihydro-β-erythroidine, which acts on the AcCho binding site in a competitive manner. This indicates a noncompetitive action of 5HT on nicotinic acetylcholine receptors. Considered together, our findings show that AcCho gates α7 mutant channels with similar conductance but with different kinetic profile than the channels gated by 5HT, suggesting that the two agonists act on different docking sites. These results will help to understand the crosstalk between cholinergic and serotonergic systems in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptors coupled to heterotrimeric G proteins can effectively stimulate growth promoting pathways in a large variety of cell types, and if persistently activated, these receptors can also behave as dominant-acting oncoproteins. Consistently, activating mutations for G proteins of the Gαs and Gαi2 families were found in human tumors; and members of the Gαq and Gα12 families are fully transforming when expressed in murine fibroblasts. In an effort aimed to elucidate the molecular events involved in proliferative signaling through heterotrimeric G proteins we have focused recently on gene expression regulation. Using NIH 3T3 fibroblasts expressing m1 muscarinic acetylcholine receptors as a model system, we have observed that activation of this transforming G protein-coupled receptors induces the rapid expression of a variety of early responsive genes, including the c-fos protooncogene. One of the c-fos promoter elements, the serum response element (SRE), plays a central regulatory role, and activation of SRE-dependent transcription has been found to be regulated by several proteins, including the serum response factor and the ternary complex factor. With the aid of reporter plasmids for gene expression, we observed here that stimulation of m1 muscarinic acetylcholine receptors potently induced SRE-driven reporter gene activity in NIH 3T3 cells. In these cells, only the Gα12 family of heterotrimeric G protein α subunits strongly induced the SRE, while Gβ1γ2 dimers activated SRE to a more limited extent. Furthermore, our study provides strong evidence that m1, Gα12 and the small GTP-binding protein RhoA are components of a novel signal transduction pathway that leads to the ternary complex factor-independent transcriptional activation of the SRE and to cellular transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human T lymphocytes have been shown to express inhibitory natural killer cell receptors (NKR), which can down-regulate T cell antigen receptor-mediated T cell function, including cytolytic activity. In the present study, we demonstrate that CD3+NKR+ cells can be identified in HIV-infected patients. HIV-specific cytolytic activity was analyzed in five patients in whom autologous lymphoblastoid B cell lines could be derived as a source of autologous target cells. Phytohemagglutinin-activated T cell populations that had been cultured in interleukin 2 displayed HIV-specific cytotoxic T lymphocyte (CTL) activity against HIV env, gag, pol, and nef in 3 of 5 patients. Addition of anti-NKR mAb of IgM isotype could increase the specific CTL activity. Moreover, in one additional patient, HIV-specific CTL activity was undetectable; however, after addition of anti-NKR mAb such CTL activity appeared de novo. Similar results were obtained by analysis of CD3+NKR+ clones derived from two patients. These data provide direct evidence that CD3+NKR+ cells may include antigen (HIV)-specific CTLs and that mAb-mediated masking of inhibitory NKR may revert the down-regulation of CTL function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptin (OB), an adipocyte-secreted circulating hormone, and its receptor (OB-R) are key components of an endocrine loop that regulates mammalian body weight. In this report we have analyzed signal transduction activities of OB-R containing the fatty mutation [OB-R(fa)], a single amino acid substitution at position 269 (Gln → Pro) in the OB-R extracellular domain that results in the obese phenotype of the fatty rat. We find that this mutant receptor exhibits both ligand-independent transcriptional activation via interleukin 6 and hematopoietin receptor response elements and ligand-independent activation of signal transducer and activator of transcription (STAT) proteins 1 and 3. However, OB-R(fa) is unable to constitutively activate STAT5B and is highly impaired for ligand induced activation of STAT5B compared with OB-R(wt). Introduction of the fatty mutation into a OB-R/G-CSF-R chimera generates a receptor with constitutive character that is similar but distinct from that of OB-R(fa). Constitutive mutant OB-R(fa) receptor signaling is repressed by coexpression of OB-R(wt). The implications of an extracellular domain amino acid substitution generating a cytokine receptor with a partially constitutive phenotype are discussed both in terms of the mechanism of OB-R triggering and the biology of the fatty rat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously have demonstrated that insulin and insulin-like growth factor-I (IGF-I) down-regulate growth hormone (GH) binding in osteoblasts by reducing the number of surface GH receptors (GHRs). The present study was undertaken to investigate the mechanism of GHR down-regulation. Treatment with 5 nM insulin or IGF-I for 18 hr significantly decreased surface GH binding to 26.4 ± 2.9% and 23.0 ± 2.7% of control (mean ± SE; P < 0.05), respectively. No corresponding reductions in the mRNA level and total cellular content of GHR were found, nor was the rate of receptor internalization affected. The effects on GHR translocation were assessed by measuring the reappearance of GH binding of whole cells after trypsinization to remove the surface receptors. GH binding of control cultures significantly increased (P < 0.05) over 2 hr after trypsinization, whereas no recovery of binding activity was detected in insulin and IGF-I-treated cultures, indicating that GHR translocation was impaired. Studies on the time course of GHR down-regulation revealed that surface GH binding was reduced significantly by 3-hr treatment (P ≤ 0.0005), whereas GHR translocation was completely abolished by 75–90 min with insulin and IGF-I. The inhibition of receptor translocation by insulin, but not IGF-I, was attenuated by wortmannin. In conclusion, insulin and IGF-I down-regulated GH binding in osteoblasts by acutely impairing GHR translocation, with their effects exerted through distinct postreceptor signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation of Bruton’s tyrosine kinase (Btk) impairs B cell maturation and function and results in a clinical phenotype of X-linked agammaglobulinemia. Activation of Btk correlates with an increase in the phosphorylation of two regulatory Btk tyrosine residues. Y551 (site 1) within the Src homology type 1 (SH1) domain is transphosphorylated by the Src family tyrosine kinases. Y223 (site 2) is an autophosphorylation site within the Btk SH3 domain. Polyclonal, phosphopeptide-specific antibodies were developed to evaluate the phosphorylation of Btk sites 1 and 2. Crosslinking of the B cell antigen receptor (BCR) or the mast cell Fcɛ receptor, or interleukin 5 receptor stimulation each induced rapid phosphorylation at Btk sites 1 and 2 in a tightly coupled manner. Btk molecules were singly and doubly tyrosine-phosphorylated. Phosphorylated Btk comprised only a small fraction (≤5%) of the total pool of Btk molecules in the BCR-activated B cells. Increased dosage of Lyn in B cells augmented BCR-induced phosphorylation at both sites. Kinetic analysis supports a sequential activation mechanism in which individual Btk molecules undergo serial transphosphorylation (site 1) then autophosphorylation (site 2), followed by successive dephosphorylation of site 1 then site 2. The phosphorylation of conserved tyrosine residues within structurally related Tec family kinases is likely to regulate their activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) and its receptors (EGFR) play important roles in tumorigenesis. In various experimental cancers, treatment with antagonists of bombesin/gastrin-releasing peptide (BN/GRP) produces a reduction in EGFRs, concomitant to inhibition of tumor growth. To investigate the mechanisms involved, we monitored concentrations of BN/GRP antagonist RC-3095 in serum of mice, rats, and hamsters given a single subcutaneous or intravenous injection of this analog. In parallel studies, we measured levels and mRNA expression of EGFRs in estrogen-dependent and independent MXT mouse mammary cancers, following a single subcutaneous administration of RC-3095 to tumor-bearing mice. Peak values of RC-3095 in serum were detected 2 min after intravenous or 15 min after subcutaneous injection. The levels of RC-3095 declined rapidly and became undetectable after 3–5 hr. In the estrogen-dependent MXT tumors, the concentration of EGF receptors was reduced by about 60% 6 hr following injection and returned to original level after 24 hr. Levels of mRNA for EGFR fell parallel with the receptor number and were nearly normal after 24 hr. In the hormone-independent MXT cancers, the number of EGFRs decreased progressively, becoming undetectable 6 hr after injection of RC-3095, and returned to normal values at 24 hr, but EGFR mRNA levels remained lower for 48 hr. Thus, in spite of rapid elimination from serum, BN/GRP antagonist RC-3095 can induce a prolonged decrease in levels and mRNA expression of EGFRs. These findings may explain how single daily injections of BN/GRP antagonists can maintain tumor growth inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between calmodulin, inositol 1,4,5-trisphosphate (InsP3), and pure cerebellar InsP3 receptors were characterized by using a scintillation proximity assay. In the absence of Ca2+, 125I-labeled calmodulin reversibly bound to multiple sites on InsP3 receptors and Ca2+ increased the binding by 190% ± 10%; the half-maximal effect occurred when the Ca2+ concentration was 184 ± 14 nM. In the absence of Ca2+, calmodulin caused a reversible, concentration-dependent (IC50 = 3.1 ± 0.2 μM) inhibition of [3H]InsP3 binding by decreasing the affinity of the receptor for InsP3. This effect was similar at all Ca2+ concentrations, indicating that the site through which calmodulin inhibits InsP3 binding has similar affinities for calmodulin and Ca2+-calmodulin. Calmodulin (10 μM) inhibited the Ca2+ release from cerebellar microsomes evoked by submaximal, but not by maximal, concentrations of InsP3. Tonic inhibition of InsP3 receptors by the high concentrations of calmodulin within cerebellar Purkinje cells may account for their relative insensitivity to InsP3 and limit spontaneous activation of InsP3 receptors in the dendritic spines. Inhibition of InsP3 receptors by calmodulin at all cytosolic Ca2+ concentrations, together with the known redistribution of neuronal calmodulin evoked by protein kinases and Ca2+, suggests that calmodulin may also allow both feedback control of InsP3 receptors and integration of inputs from other signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-channel recordings were obtained from Chinese hamster ovary cells transfected with the N-methyl-d-aspartate (NMDA) receptor subunit NR1 in combination with NR2A, NR2B, NR2C, or NR2A/NR2B. NMDA-activated currents were recorded under control conditions and in the presence of a thiol reductant (DTT), an oxidant (5,5′-dithio-bis[2-nitrobenzoic acid], DTNB), or the noncompetitive antagonist CP101,606 (CP). For all subunit combinations, DTT increased the frequency of channel opening when compared with DTNB. In addition, channels obtained from NR1/NR2A-transfected cells also exhibited a pronounced difference in mean open dwell-time between redox conditions. CP dramatically reduced both the open dwell-time and frequency of channel opening of NR1/NR2B-containing receptors, but only modestly inhibited NR1/NR2A and NR1/NR2C channel activity. A small number of patches obtained from cells transfected with NR1/NR2A/NR2B had channels with properties intermediate to NR1/NR2A and NR1/NR2B receptors, including insensitivity to CP block but redox properties similar to NR1/NR2B, consistent with the coassembly of NR2A with NR2B. Hence, NMDA receptors containing multiple types of NR2 subunits can have functionally distinguishable attributes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain peptides derived from the α1 domain of the major histocompatibility class I antigen complex (MHC-I) inhibit receptor internalization, increasing the steady-state number of active receptors on the cell surface and thereby enhancing the sensitivity to hormones and other agonists. These peptides self-assemble, and they also bind to MHC-I at the same site from which they are derived, suggesting that they could bind to receptor sites with significant sequence similarity. Receptors affected by MHC-I peptides do, indeed, have such sequence similarity, as illustrated here by insulin receptor (IR) and insulin-like growth factor-1 receptor. A synthetic peptide with sequence identical to a certain extracellular receptor domain binds to that receptor in a ligand-dependent manner and inhibits receptor internalization. Moreover, each such peptide is selective for its cognate receptor. An antibody to the IR peptide not only binds to IR and competes with the peptide but also inhibits insulin-dependent internalization of IR. These observations, and binding studies with deletion mutants of IR, indicate that the sequence QILKELEESSF encoded by exon 10 plays a key role in IR internalization. Our results illustrate a principle for identifying receptor-specific sites of importance for receptor internalization, and for enhancing sensitivity to hormones and other agonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies indicated that the central nervous system induces release of the cardiac hormone atrial natriuretic peptide (ANP) by release of oxytocin from the neurohypophysis. The presence of specific transcripts for the oxytocin receptor was demonstrated in all chambers of the heart by amplification of cDNA by the PCR using specific oligonucleotide primers. Oxytocin receptor mRNA content in the heart is 10 times lower than in the uterus of female rats. Oxytocin receptor transcripts were demonstrated by in situ hybridization in atrial and ventricular sections and confirmed by competitive binding assay using frozen heart sections. Perfusion of female rat hearts for 25 min with Krebs–Henseleit buffer resulted in nearly constant release of ANP. Addition of oxytocin (10−6 M) significantly stimulated ANP release, and an oxytocin receptor antagonist (10−7 and 10−6 M) caused dose-related inhibition of oxytocin-induced ANP release and in the last few minutes of perfusion decreased ANP release below that in control hearts, suggesting that intracardiac oxytocin stimulates ANP release. In contrast, brain natriuretic peptide release was unaltered by oxytocin. During perfusion, heart rate decreased gradually and it was further decreased significantly by oxytocin (10−6 M). This decrease was totally reversed by the oxytocin antagonist (10−6 M) indicating that oxytocin released ANP that directly slowed the heart, probably by release of cyclic GMP. The results indicate that oxytocin receptors mediate the action of oxytocin to release ANP, which slows the heart and reduces its force of contraction to produce a rapid reduction in circulating blood volume.