69 resultados para Overexpression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calreticulin (CRT) is a high-capacity, low-affinity Ca2+-binding protein located in the lumen of the endoplasmic reticulum (ER) of all eukaryotic cells investigated so far. Its high level of conservation among different species suggests that it serves functions fundamental to cell survival. The role originally proposed for CRT, i.e., the main Ca2+ buffer of the ER, has been obscured or even casted by its implication in processes as diverse as gene expression, protein folding, and cell adhesion. In this work we seek the role of CRT in Ca2+ storing and signaling by evaluating its effects on the kinetics and amplitude of the store-operated Ca2+ current (ICRAC). We show that, in the rat basophilic leukemia cell line RBL-1, overexpression of CRT, but not of its mutant lacking the high-capacity Ca2+-binding domain, markedly retards the ICRAC development, however, only when store depletion is slower than the rate of current activation. On the contrary, when store depletion is rapid and complete, overexpression of CRT has no effect. The present results are compatible with a major Ca2+-buffering role of CRT within the ER but exclude a direct, or indirect, role of this protein on the mechanism of ICRAC activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several changes in cell morphology take place during the capping of surface receptors in Entamoeba histolytica. The amoebae develop the uroid, an appendage formed by membrane invaginations, which accumulates ligand–receptor complexes resulting from the capping process. Membrane shedding is particularly active in the uroid region and leads to the elimination of accumulated ligands. This appendage has been postulated to participate in parasitic defense mechanisms against the host immune response, because it eliminates complement and specific antibodies bound to the amoeba surface. The involvement of myosin II in the capping process of surface receptors has been suggested by experiments showing that drugs that affect myosin II heavy-chain phosphorylation prevent this activity. To understand the role of this mechanoenzyme in surface receptor capping, a myosin II dominant negative strain was constructed. This mutant is the first genetically engineered cytoskeleton-deficient strain of E. histolytica. It was obtained by overexpressing the light meromyosin domain, which is essential for myosin II filament formation. E. histolytica overexpressing light meromyosin domain displayed a myosin II null phenotype characterized by abnormal movement, failure to form the uroid, and failure to undergo the capping process after treatment with concanavalin A. In addition, the amoebic cytotoxic capacities of the transfectants on human colon cells was dramatically reduced, indicating a role for cytoskeleton in parasite pathogenicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure–function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP–CALM was targeted to the plasma membrane–coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP–CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP–CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin–CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rho family proteins have been implicated in regulating various cellular processes, including actin cytoskeleton organization, endocytosis, cell cycle, and gene expression. In this study, we analyzed the function of a novel Dictyostelium discoideum Rho family protein (RacC). A cell line was generated that conditionally overexpressed wild-type RacC three- to fourfold relative to endogenous RacC. Light and scanning electron microscopy indicated that the morphology of the RacC-overexpressing cells [RacC WT(+) cells] was significantly altered compared with control cells. In contrast to the cortical F-actin distribution normally observed, RacC WT(+) cells displayed unusual dorsal and peripheral F-actin–rich surface blebs (petalopodia, for flower-like). Furthermore, phagocytosis in the RacC WT(+) cells was induced threefold relative to control Ax2 cells, whereas fluid-phase pinocytosis was reduced threefold, primarily as the result of an inhibition of macropinocytosis. Efflux of fluid-phase markers was also reduced in the RacC WT(+) cells, suggesting that RacC may regulate postinternalization steps along the endolysosomal pathway. Treatment of cells with Wortmannin and LY294002 (phosphatidylinositol 3-kinase inhibitors) prevented the RacC-induced morphological changes but did not affect phagocytosis, suggesting that petalopodia are probably not required for RacC-induced phagocytosis. In contrast, inactivating diacylglycerol-binding motif–containing proteins by treating cells with the drug calphostin C completely inhibited phagocytosis in control and RacC WT(+) cells. These results suggest that RacC plays a role in actin cytoskeleton organization and phagocytosis in Dictyostelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of p53 causes G2 arrest, attributable in part to the loss of CDC2 activity. Transcription of cdc2 and cyclin B1, determined using reporter constructs driven by the two promoters, was suppressed in response to the induction of p53. Suppression requires the regions −287 to −123 of the cyclin B1 promoter and −104 to −74 of the cdc2 promoter. p53 did not affect the inhibitory phosphorylations of CDC2 at threonine 14 or tyrosine 15 or the activity of the cyclin-dependent kinase that activates CDC2 by phosphorylating it at threonine 161. Overexpression of p53 may also interfere with the accumulation of CDC2/cyclin B1 in the nucleus, required for cells to enter mitosis. Constitutive expression of cyclin B1, alone or in combination with the constitutively active CDC2 protein T14A Y15F, did not reverse p53-dependent G2 arrest. However, targeting cyclin B1 to the nucleus in cells also expressing CDC2 T14A Y15F did overcome this arrest. It is likely that several distinct pathways contribute to p53-dependent G2 arrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow of material from peripheral, early endosomes to late endosomes requires microtubules and is thought to be facilitated by the minus end-directed motor cytoplasmic dynein and its activator dynactin. The microtubule-binding protein CLIP-170 may also play a role by providing an early link to endosomes. Here, we show that perturbation of dynactin function in vivo affects endosome dynamics and trafficking. Endosome movement, which is normally bidirectional, is completely inhibited. Receptor-mediated uptake and recycling occur normally, but cells are less susceptible to infection by enveloped viruses that require delivery to late endosomes, and they show reduced accumulation of lysosomally targeted probes. Dynactin colocalizes at microtubule plus ends with CLIP-170 in a way that depends on CLIP-170’s putative cargo-binding domain. Overexpression studies using p150Glued, the microtubule-binding subunit of dynactin, and mutant and wild-type forms of CLIP-170 indicate that CLIP-170 recruits dynactin to microtubule ends. These data suggest a new model for the formation of motile complexes of endosomes and microtubules early in the endocytic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of growth hormone (GH) in amphibian metamorphosis is ambiguous based on experiments in which mammalian GH was administered to tadpoles and frogs. We have reexamined the effects of GH by producing transgenic Xenopus laevis that overexpress the cDNA encoding X. laevis GH. These transgenic tadpoles take the same length of time to reach metamorphosis as control tadpoles, but the transgenic tadpoles are twice as large. After metamorphosis, the transgenic frogs grow at a greatly accelerated rate and develop skeletal abnormalities reminiscent of acromegaly. The transgenic frogs are larger than mature frogs in a few months and die in about 1 year. At as early as 10 months of age, the males have mature sperm. We conclude that the growth-promoting effects of GH in this amphibian closely resemble those described for mammals. Although excess GH increases the size of the tadpole, it does not alter the developmental programs involved in metamorphosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5,000–10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of skin carcinomas presently is believed to be correlated with mutations in the p53 tumor suppressor and ras gene as well as with the loss of chromosome 9. We now demonstrate that, in addition, loss of chromosome 15 may be a relevant genetic defect. Reintroduction of an extra copy of chromosome 15, but not chromosome 4, into the human skin carcinoma SCL-I cells, lacking one copy of each chromosome, resulted in tumor suppression after s.c. injection in mice. Transfection with thrombospondin-1 (TSP-1), mapped to 15q15, induced the same tumor suppression without affecting cell proliferation in vitro or in vivo. Halted tumors remained as small cysts encapsulated by surrounding stroma and blood vessels. These cysts were characterized by increased TSP-1 matrix deposition at the tumor/stroma border and a complete lack of tumor vascularization. Coinjection of TSP-1 antisense oligonucleotides drastically reduced TSP-1 expression and almost completely abolished matrix deposition at the tumor/stroma border. As a consequence, the tumor phenotype reverted to a well vascularized, progressively expanding, solid carcinoma indistinguishable from that induced by the untransfected SCL-I cells. Thus, these data strongly suggest TSP-1 as a potential tumor suppressor on chromosome 15. The data further propose an unexpected mechanism of TSP-1-mediated tumor suppression. Instead of interfering with angiogenesis in general, in this system TSP-1 acts as a matrix barrier at the tumor/stroma border, which, by halting tumor vascularization, prevents tumor cell invasion and, thus, tumor expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nervous system maintains a delicate balance between excitation and inhibition, partly through the complex interplay between voltage-gated sodium and potassium ion channels. Because K+ channel blockade or gene deletion causes hyperexcitability, it is generally assumed that increases in K+ channel gene expression should reduce neuronal network excitability. We have tested this hypothesis by creating a transgenic mouse that expresses a Shaker-type K+ channel gene. Paradoxically, we find that addition of the extra K+ channel gene results in a hyperexcitable rather than a hypoexcitable phenotype. The presence of the transgene leads to a complex deregulation of endogenous Shaker genes in the adult central nervous system as well as an increase in network excitability that includes spontaneous cortical spike and wave discharges and a lower threshold for epileptiform bursting in isolated hippocampal slices. These data suggest that an increase in K+ channel gene dosage leads to dysregulation of normal K+ channel gene expression, and it may underlie a mechanism contributing to the pathogenesis of human aneuploidies such as Down syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the proto-oncogene MYC has been implicated in the genesis of diverse human cancers. One explanation for the role of MYC in tumorigenesis has been that this gene might drive cells inappropriately through the division cycle, leading to the relentless proliferation characteristic of the neoplastic phenotype. Herein, we report that the overexpression of MYC alone cannot sustain the division cycle of normal cells but instead leads to their arrest in G2. We used an inducible form of the MYC protein to stimulate normal human and rodent fibroblasts. The stimulated cells passed through G1 and S but arrested in G2 and frequently became aneuploid, presumably as a result of inappropriate reinitiation of DNA synthesis. Absence of the tumor suppressor gene p53 or its downstream effector p21 reduced the frequency of both G2 arrest and aneuploidy, apparently by compromising the G2 checkpoint control. Thus, relaxation of the G2 checkpoint may be an essential early event in tumorigenesis by MYC. The loss of p53 function seems to be one mechanism by which this relaxation commonly occurs. These findings dramatize how multiple genetic events can collaborate to produce neoplastic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallothioneins (MT) are involved in the scavenging of the toxic heavy metals and protection of cells from reactive oxygen intermediates. To investigate the potential role of the protein Ku in the expression of MT, we measured the level of MT-I mRNA in the parental rat fibroblast cell line (Rat 1) and the cell lines that stably and constitutively overexpress the small subunit, the large subunit, and the heterodimer of Ku. Treatment with CdS04 or ZnS04 elevated the MT-I mRNA level 20- to 30-fold in the parental cells and the cells (Ku-70) that overproduce the small subunit or those (Ku-7080) overexpressing the heterodimer. By contrast, the cells (Ku-80) overexpressing the large subunit of Ku failed to induce MT-I. In vitro transcription assay showed that the MT-I promoter activity was suppressed selectively in the nuclear extracts from Ku-80 cells. The specificity of the repressor function was shown by the induction of hsp 70, another Cd-inducible gene, in Ku-80 cells. Addition of the nuclear extract from Ku-80 cells at the start of the transcription reaction abolished the MT-l promoter activity in the Rat 1 cell extract. The transcript once formed in Rat 1 nuclear extract was not degraded by further incubation with the extract from Ku-80 cells. The repressor was sensitive to heat. The DNA-binding activities of at least four transcription factors that control the MT-I promoter activity were not affected in Ku-80 cells. These observations have set the stage for further exploration of the mechanisms by which the Ku subunit mediates suppression of MT induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mdm2 proto-oncogene is amplified to high copy numbers in human sarcomas and is overexpressed in a wide variety of other human cancers. Because Mdm2 protein forms a complex with the p53 tumor suppressor protein and down-regulates p53 function, the oncogenic potential of Mdm2 is presumed to be p53-dependent. To model these conditions in mice, we have used the entire Mdm2 gene, under transcriptional control of its native promoter region, as a transgene to create mice that overexpress Mdm2. The transgenic mice are predisposed to spontaneous tumor formation, and the incidence of sarcomas observed in the Mdm2-transgenic mice in the presence or absence of functional p53 demonstrates that, in addition to Mdm2-mediated inactivation of p53, there exists a p53-independent role for Mdm2 in tumorigenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of the S1S2 ligand binding domain [Kuusinen, A., Arvola, M. & Keinänen, K. (1995) EMBO J. 14, 6327–6332] of the rat α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-selective glutamate receptor GluR2 in Escherichia coli under control of a T7 promoter leads to production of >100 mg/liter of histidine-tagged S1S2 protein (HS1S2) in the form of inclusion bodies. Using a novel fractional factorial folding screen and a rational, step-by-step approach, multiple conditions were determined for the folding of the HS1S2 α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid binding domain. Characterization of the HS1S2 ligand binding domain showed that it is water-soluble, monomeric, has significant secondary structure, and is sensitive to trypsinolysis at sites close to the beginning of the putative transmembrane regions. Application of a fractional factorial folding screen to other proteins may provide a useful means to evaluate E. coli as an economical and convenient expression host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

dinP is an Escherichia coli gene recently identified at 5.5 min of the genetic map, whose product shows a similarity in amino acid sequence to the E. coli UmuC protein involved in DNA damage-induced mutagenesis. In this paper we show that the gene is identical to dinB, an SOS gene previously localized near the lac locus at 8 min, the function of which was shown to be required for mutagenesis of nonirradiated λ phage infecting UV-preirradiated bacterial cells (termed λUTM for λ untargeted mutagenesis). A newly constructed dinP null mutant exhibited the same defect for λUTM as observed previously with a dinB::Mu mutant, and the defect was complemented by plasmids carrying dinP as the only intact bacterial gene. Furthermore, merely increasing the dinP gene expression, without UV irradiation or any other DNA-damaging treatment, resulted in a strong enhancement of mutagenesis in F′lac plasmids; at most, 800-fold increase in the G6-to-G5 change. The enhanced mutagenesis did not depend on recA, uvrA, or umuDC. Thus, our results establish that E. coli has at least two distinct pathways for SOS-induced mutagenesis: one dependent on umuDC and the other on dinB/P.