18 resultados para Output-only Modal-based Damage Identification


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on our previous transgenic mice results, which strongly suggested that separate cell-specific cis-acting elements of the mouse pro-alpha 1(I) collagen promoter control the activity of the gene in different type I collagen-producing cells, we attempted to delineate a short segment in this promoter that could direct high-level expression selectively in osteoblasts. By generating transgenic mice harboring various fragments of the promoter, we identified a 117-bp segment (-1656 to -1540) that is a minimal sequence able to confer high-level expression of a lacZ reporter gene selectively in osteoblasts when cloned upstream of the proximal 220-bp pro-alpha 1(I) promoter. This 220-bp promoter by itself was inactive in transgenic mice and unable to direct osteoblast-specific expression. The 117-bp enhancer segment contained two sequences that appeared to have different functions. The A sequence (-1656 to -1628) was required to obtain expression of the lacZ gene in osteoblasts, whereas the C sequence (-1575 to -1540) was essential to obtain consistent and high-level expression of the lacZ gene in osteoblasts. Gel shift assays showed that the A sequence bound a nuclear protein present only in osteoblastic cells. A mutation in the A segment that abolished the binding of this osteoblast-specific protein also abolished lacZ expression in osteoblasts of transgenic mice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trypanosomes are protozoan parasites of medical and veterinary importance. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense infect humans, causing African sleeping sickness. However, Trypanosoma brucei brucei can only infect animals, causing the disease Nagana in cattle. Man is protected from this subspecies of trypanosomes by a toxic subtype of high density lipoproteins (HDLs) called the trypanosome lytic factor (TLF). The toxic molecule in TLF is believed to be the haptoglobin-related protein that when bound to hemoglobin kills the trypanosome via oxidative damage initiated by its peroxidase activity. The amount of lytic activity in serum varies widely between different individuals with up to a 60-fold difference in activity. In addition, an increase in the total amount of lytic activity occurs during the purification of TLF, suggesting that an inhibitor of TLF (ITLF) exists in human serum. We now show that the individual variation in trypanosome lytic activity in serum correlates to variations in the amount of ITLF. Immunoblots of ITLF probed with antiserum against haptoglobin recognize a 120-kDa protein, indicating that haptoglobin is present in partially purified ITLF. Haptoglobin involvement is further shown in that it inhibits TLF in a manner similar to ITLF. Using an anti-haptoglobin column to remove haptoglobin from ITLF, we show that the loss of haptoglobin coincides with the loss of inhibitor activity. Addition of purified haptoglobin restores inhibitor activity. This indicates that haptoglobin is the molecule responsible for inhibition and therefore causing the individual variation in serum lytic activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bombesin is a tetradecapeptide originally isolated from frog skin and demonstrated to have a wide range of actions in mammals. Based on structural homology and similar biological activities, gastrin-releasing peptide (GRP) has been considered the mammalian equivalent of bombesin. We previously reported that frogs have both GRP and bombesin, which therefore are distinct peptides. We now report the cloning of a bombesin receptor subtype (BB4) that has higher affinity for bombesin than GRP. PCR was used to amplify cDNAs related to the known bombesin receptors from frog brain. Sequence analysis of the amplified cDNAs revealed 3 classes of receptor subtypes. Based on amino acid homology, two classes were clearly the amphibian homologs of the GRP and neuromedin B receptors. The third class was unusual and a full-length clone was isolated from a Bombina orientalis brain cDNA library. Expression of the receptor in Xenopus oocytes demonstrated that the receptor responded to picomolar concentrations of [Phe13]-bombesin, the form of bombesin most prevalent in frog brain. The relative rank potency of bombesin-like peptides for this receptor was [Phe13]bombesin > [Leu13]bombesin > GRP > neuromedin B. In contrast, the rank potency for the GRP receptor is GRP > [Leu13]bombesin > [Phe13]bombesin > neuromedin B. Transient expression in CHOP cells gave a Ki for [Phe13]bombesin of 0.2 nM versus a Ki of 2.1 nM for GRP. Distribution analysis showed that this receptor was expressed only in brain, consistent with the distribution of [Phe13]-bombesin. Thus, based on distribution and affinity, this bombesin receptor is the receptor for [Phe13]bombesin. Phylogenetic analysis suggests that this receptor separated prior to separation of the GRP and neuromedin B receptors; thus, BB4 receptors and their cognate ligands may also exist in mammals.