22 resultados para Operons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present here the complete genome sequence of a common avian clone of Pasteurella multocida, Pm70. The genome of Pm70 is a single circular chromosome 2,257,487 base pairs in length and contains 2,014 predicted coding regions, 6 ribosomal RNA operons, and 57 tRNAs. Genome-scale evolutionary analyses based on pairwise comparisons of 1,197 orthologous sequences between P. multocida, Haemophilus influenzae, and Escherichia coli suggest that P. multocida and H. influenzae diverged ≈270 million years ago and the γ subdivision of the proteobacteria radiated about 680 million years ago. Two previously undescribed open reading frames, accounting for ≈1% of the genome, encode large proteins with homology to the virulence-associated filamentous hemagglutinin of Bordetella pertussis. Consistent with the critical role of iron in the survival of many microbial pathogens, in silico and whole-genome microarray analyses identified more than 50 Pm70 genes with a potential role in iron acquisition and metabolism. Overall, the complete genomic sequence and preliminary functional analyses provide a foundation for future research into the mechanisms of pathogenesis and host specificity of this important multispecies pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparisons of codon frequencies of genes to several gene classes are used to characterize highly expressed and alien genes on the Synechocystis PCC6803 genome. The primary gene classes include the ensemble of all genes (average gene), ribosomal protein (RP) genes, translation processing factors (TF) and genes encoding chaperone/degradation proteins (CH). A gene is predicted highly expressed (PHX) if its codon usage is close to that of the RP/TF/CH standards but strongly deviant from the average gene. Putative alien (PA) genes are those for which codon usage is significantly different from all four classes of gene standards. In Synechocystis, 380 genes were identified as PHX. The genes with the highest predicted expression levels include many that encode proteins vital for photosynthesis. Nearly all of the genes of the RP/TF/CH gene classes are PHX. The principal glycolysis enzymes, which may also function in CO2 fixation, are PHX, while none of the genes encoding TCA cycle enzymes are PHX. The PA genes are mostly of unknown function or encode transposases. Several PA genes encode polypeptides that function in lipopolysaccharide biosynthesis. Both PHX and PA genes often form significant clusters (operons). The proteins encoded by PHX and PA genes are described with respect to functional classifications, their organization in the genome and their stoichiometry in multi-subunit complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following transcription and splicing, each mRNA of a mammalian cell passes into the cytoplasm where its fate is in the hands of a complex network of ribonucleoproteins (mRNPs). The success or failure of a gene to be expressed depends on the performance of this mRNP infrastructure. The entry, gating, processing, and transit of each mRNA through an mRNP network helps determine the composition of a cell's proteome. The machinery that regulates storage, turnover, and translational activation of mRNAs is not well understood, in part, because of the heterogeneous nature of mRNPs. Recently, subsets of cellular mRNAs clustered as members of mRNP complexes have been identified by using antibodies reactive with RNA-binding proteins, including ELAV/Hu, eIF-4E, and poly(A)-binding proteins. Cytoplasmic ELAV/Hu proteins are involved in the stability and translation of early response gene (ERG) transcripts and are expressed predominately in neurons. mRNAs recovered from ELAV/Hu mRNP complexes were found to have similar sequence elements, suggesting a common structural linkage among them. This approach opens the possibility of identifying transcripts physically clustered in vivo that may have similar fates or functions. Moreover, the proteins encoded by physically organized mRNAs may participate in the same biological process or structural outcome, not unlike operons and their polycistronic mRNAs do in prokaryotic organisms. Our goal is to understand the organization and flow of genetic information on an integrative systems level by analyzing the collective properties of proteins and mRNAs associated with mRNPs in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We isolated two tomato (Lycopersicon esculentum) cDNA clones, tomPRO1 and tomPRO2, specifying Δ1-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of proline (Pro) biosynthesis. tomPRO1 is unusual because it resembles prokaryotic polycistronic operons (M.G. García-Ríos, T. Fujita, P.C. LaRosa, R.D. Locy, J.M. Clithero, R.A. Bressan, L.N. Csonka [1997] Proc Natl Acad Sci USA 94: 8249–8254), whereas tomPRO2 encodes a full-length P5CS. We analyzed the accumulation of Pro and the tomPRO1 and tomPRO2 messages in response to NaCl stress and developmental signals. Treatment with 200 mm NaCl resulted in a >60-fold increase in Pro levels in roots and leaves. However, there was a <3-fold increase in the accumulation of the tomPRO2 message and no detectable induction in the level of the tomPRO1 message in response to NaCl stress. Although pollen contained approximately 100-fold higher levels of Pro than other plant tissues, there was no detectable increase in the level of either message in pollen. We conclude that transcriptional regulation of these genes for P5CS is probably not important for the osmotic or pollen-specific regulation of Pro synthesis in tomato. Using restriction fragment-length polymorphism mapping, we determined the locations of tomPRO1 and tomPRO2 loci in the tomato nuclear genome. Sequence comparison suggested that tomPRO1 is similar to prokaryotic P5CS loci, whereas tomPRO2 is closely related to other eukaryotic P5CS genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conjugative transfer of the plasmid pCF10 by Enterococcus faecalis donor cells occurs in response to a peptide sex pheromone, cCF10, secreted by recipients. The plasmid-encoded cCF10 binding protein, PrgZ, is similar in sequence to binding proteins (OppAs) encoded by oligopeptide permease (opp) operons. Mutation of prgZ decreased the sensitivity of donor cells to pheromone, whereas inactivation of the chromosomal E. faecalis opp operon abolished response at physiological concentrations of pheromone. Affinity chromatography experiments demonstrated the interaction of the pheromone with several putative intracellular regulatory molecules, including an RNA molecule required for positive regulation of conjugation functions. These data suggest that processing of the pheromone signal involves recruitment of a chromosomal Opp system by PrgZ and that signaling occurs by direct interaction of internalized pheromone with intracellular effectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To classify Listeria monocytogenes using taxonomic characters derived from the rRNA operons and their flanking sequences, we studied a sample of 1346 strains within the taxon. DNA from each strain was digested with a restriction endonuclease, EcoRI. The fragments were separated by gel electrophoresis, immobilized on a membrane, and hybridized with a labeled rRNA operon from Escherichia coli. The pattern of bands, positions, and intensities of hybridized fragments were electronically captured. Software was used to normalize the band positions relative to standards, scale the signal intensity, and reduce the background so that each strain was reproducibly represented in a data base as a pattern. With these methods, L. monocytogenes was resolved into 50 pattern types differing in the length of at least one polymorphic fragment. Pattern types representing multiple strains were recorded as the mathematical average of the strain patterns. Pattern types were arranged by size polymorphisms of assigned rRNA regions into subsets, which revealed the branching genetic structure of the species. Subtracting the polymorphic variants of a specific assigned region from the pattern types and averaging the types within each subset resulted in reduced sets of conserved fragments that could be used to recognize strains of the species. Pattern types and reduced sets of conserved fragments were conserved among different strains of L. monocytogenes but were not observed in total among strains of other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription of downstream genes in the early operons of phage lambda requires a promoter-proximal element known as nut. This site acts in cis in the form of RNA to assemble a transcription antitermination complex which is composed of lambda N protein and at least four host factors. The nut-site RNA contains a small stem-loop structure called boxB. Here, we show that boxB RNA binds to N protein with high affinity and specificity. While N binding is confined to the 5' subdomain of the stem-loop, specific N recognition relies on both an intact stem-loop structure and two critical nucleotides in the pentamer loop. Substitutions of these nucleotides affect both N binding and antitermination. Remarkably, substitutions of other loop nucleotides also diminish antitermination in vivo, yet they have no detectable effect on N binding in vitro. These 3' loop mutants fail to support antitermination in a minimal system with RNA polymerase (RNAP), N, and the host factor NusA. Furthermore, the ability of NusA to stimulate the formation of the RNAP-boxB-N complex is diminished with these mutants. Hence, we suggest that boxB RNA performs two critical functions in antitermination. First, boxB binds to N and secures it near RNAP to enhance their interaction, presumably by increasing the local concentration of N. Second, boxB cooperates with NusA, most likely to bring N and RNAP in close contact and transform RNAP to the termination-resistant state.