35 resultados para One parameter family


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method which allows the isolation of fragments from genes coding for homologous proteins via PCR when only one block of conserved amino acids is available. Sets of degenerated primers are defined by reverse translation of the conserved amino acids such that each set contains not more than 128 different sequences. The second primer binding site is provided by a special cassette that is designed such that it does not allow binding of the second primer prior to being copied by DNA synthesis. The cassette is ligated to partially-digested chromosomal DNA. The second primer is biotinylated to allow elimination of PCR products carrying degenerated primers on both sides via streptavidin binding. Fragments obtained after amplification and enrichment are cloned and sequenced. The feasibility of this method was demonstrated in a model experiment, where degenerated primers were deduced from six conserved amino acids within the family of homologs to the Escherichia coli Vsr protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taking advantage of the ongoing Dictyostelium genome sequencing project, we have assembled >73 kb of genomic DNA in 15 contigs harbouring 15 genes and one pseudogene of Rho-related proteins. Comparison with EST sequences revealed that every gene is interrupted by at least one and up to four introns. For racC extensive alternative splicing was identified. Northern blot analysis showed that mRNAs for racA, racE, racG, racH and racI were present at all stages of development, whereas racJ and racL were expressed only at late stages. Amino acid sequences have been analysed in the context of Rho-related proteins of other organisms. Rac1a/1b/1c, RacF1/F2 and to a lesser extent RacB and the GTPase domain of RacA can be grouped in the Rac subfamily. None of the additional Dictyostelium Rho-related proteins belongs to any of the well-defined subfamilies, like Rac, Cdc42 or Rho. RacD and RacA are unique in that they lack the prenylation motif characteristic of Rho proteins. RacD possesses a 50 residue C-terminal extension and RacA a 400 residue C-terminal extension that contains a proline-rich region, two BTB domains and a novel C-terminal domain. We have also identified homologues for RacA in Drosophila and mammals, thus defining a new subfamily of Rho proteins, RhoBTB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polymerase chain reaction (PCR) is a versatile method to amplify specific DNA with oligonucleotide primers. By designing degenerate PCR primers based on amino acid sequences that are highly conserved among all known gene family members, new members of a multigene family can be identified. The inherent weakness of this approach is that the degenerate primers will amplify previously identified, in addition to new, family members. To specifically address this problem, we synthesized a specific RNA for each known family member so that it hybridized to one strand of the template, adjacent to the 3′-end of the primer, allowing the degenerate primer to bind yet preventing extension by DNA polymerase. To test our strategy, we used known members of the soluble, nitric oxide-sensitive guanylyl cyclase family as our templates and degenerate primers that discriminate this family from other guanylyl cyclases. We demonstrate that amplification of known members of this family is effectively and specifically inhibited by the corresponding RNAs, alone or in combination. This robust method can be adapted to any application where multiple PCR products are amplified, as long as the sequence of the desired and the undesired PCR product(s) is sufficiently distinct between the primers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is no control over the information provided with sequences when they are deposited in the sequence databases. Consequently mistakes can seed the incorrect annotation of other sequences. Grouping genes into families and applying controlled annotation overcomes the problems of incorrect annotation associated with individual sequences. Two databases (http://www.mendel.ac.uk) were created to apply controlled annotation to plant genes and plant ESTs: Mendel-GFDb is a database of plant protein (gene) families based on gapped-BLAST analysis of all sequences in the SWISS-PROT family of databases. Sequences are aligned (ClustalW) and identical and similar residues shaded. The families are visually curated to ensure that one or more criteria, for example overall relatedness and/or domain similarity relate all sequences within a family. Sequence families are assigned a ‘Gene Family Number’ and a unified description is developed which best describes the family and its members. If authority exists the gene family is assigned a ‘Gene Family Name’. This information is placed in Mendel-GFDb. Mendel-ESTS is primarily a database of plant ESTs, which have been compared to Mendel-GFDb, completely sequenced genomes and domain databases. This approach associated ESTs with individual sequences and the controlled annotation of gene families and protein domains; the information being placed in Mendel-ESTS. The controlled annotation applied to genes and ESTs provides a basis from which a plant transcription database can be developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DAN/TIR mannoprotein genes of Saccharomyces cerevisiae (DAN1, DAN2, DAN3, DAN4, TIR1, TIR2, TIR3 and TIR4) are expressed in anaerobic cells while the predominant cell wall proteins Cwp1 and Cwp2 are down-regulated. Elements involved in activation and repression of the DAN/TIR genes were defined in this study, using the DAN1 promoter as a model. Nested deletions in a DAN1/lacZ reporter pinpointed regions carrying activation and repression elements. Inspection revealed two consensus sequences subsequently shown to be independent anaerobic response elements (AR1, consensus TCGTTYAG; AR2, consensus AAAAATTGTTGA). AR1 is found in all of the DAN/TIR promoters; AR2 is found in DAN1, DAN2 and DAN3. A 120 bp segment carrying two copies of AR1 preferentially activated transcription of lacZ under anaerobic conditions. A fusion of three synthetic copies of AR1 to MEL1 was also expressed anaerobically. Mutations in either AR1 site within the 120 bp segment caused a drastic loss of expression, indicating that both are necessary for activation and implying cooperativity between adjacent transcriptional activation complexes. A single AR2 site carried on a 46 bp fragment from the DAN1 promoter activated lacZ transcription under anaerobic conditions, as did a 26 bp synthetic AR2 fragment fused to MEL1. Nucleotide substitutions within the AR2 sequence eliminated the activity of the 46 bp segment. Ablation of the AR2 sequences in the full promoter caused a partial reduction of expression. The presence of the ATTGTT core (recognized by HMG proteins) in the AR2 sequence suggests that an HMG protein may activate through AR2. One region was implicated in aerobic repression of DAN1. It contains sites for the heme-induced Mot3 and Rox1 repressors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poison frogs (family Dendrobatidae) are terrestrial anuran amphibians displaying a wide range of coloration and toxicity. These frogs generally have been considered to be aposematic, but relatively little research has been carried out to test the predictions of this hypothesis. Here we use a comparative approach to test one prediction of the hypothesis of aposematism: that coloration will evolve in tandem with toxicity. Recently, we developed a phylogenetic hypothesis of the evolutionary relationships among representative species of poison frogs, using sequences from three regions of mitochondrial DNA. In our analysis, we use that DNA-based phylogeny and comparative analysis of independent contrasts to investigate the correlation between coloration and toxicity in the poison frog family (Dendrobatidae). Information on the toxicity of different species was obtained from the literature. Two different measures of the brightness and extent of coloration were used. (i) Twenty-four human observers were asked to rank different photos of each different species in the analysis in terms of contrast to a leaf-littered background. (ii) Color photos of each species were scanned into a computer and a computer program was used to obtain a measure of the contrast of the colors of each species relative to a leaf-littered background. Comparative analyses of the results were carried out with two different models of character evolution: gradual change, with branch lengths proportional to the amount of genetic change, and punctuational change, with all change being associated with speciation events. Comparative analysis using either method or model indicated a significant correlation between the evolution of toxicity and coloration across this family. These results are consistent with the hypothesis that coloration in this group is aposematic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the 7 years since dynamin was first isolated from bovine brain in search of novel microtubule-based motors, our understanding of this enzyme has expanded significantly. We now know that brain dynamin belongs to a family of large GTPases, which mediate vesicle trafficking. Furthermore, this enzymatic activity is markedly increased through association with microtubules, acidic phospholipids, and certain regulatory proteins that contain Src homology 3 (SH3) domains. From functional, genetic, and cellular manipulations, it is now generally accepted that dynamin participates in the endocytic uptake of receptors, associated ligands, and plasma membrane following an exocytic event. These observations have confirmed at least one function of dynamin that was predicted from seminal studies on a pleiotropic mutant, shibirets (shits) in Drosophila melanogaster. Of equal interest is the finding that there are multiple dynamin gene products, including two that are expressed in a tissue-specific manner, and they share marked homology with a larger family of distinct but related proteins. Therefore, it is attractive to speculate that the different dynamins may participate in related cellular functions, such as distinct endocytic processes and even secretion. In turn, dynamin could play an important role in cell growth, cell spreading, and neurite outgrowth. The purpose of this review is to enumerate on the expansive dynamin literature and to discuss the nomenclature, expression, and putative functions of this growing and interesting family of proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of environmental stresses can lead to enhanced production of superoxide within plant tissues, and plants are believed to rely on the enzyme superoxide dismutase (SOD) to detoxify this reactive oxygen species. We have identified seven cDNAs and genes for SOD in Arabidopsis. These consist of three CuZnSODs (CSD1, CSD2, and CSD3), three FeSODs (FSD1, FSD2, and FSD3), and one MnSOD (MSD1). The chromosomal location of these seven SOD genes has been established. To study this enzyme family, antibodies were generated against five proteins: CSD1, CSD2, CSD3, FSD1, and MSD1. Using these antisera and nondenaturing-polyacrylamide gel electrophoresis enzyme assays, we identified protein and activity for two CuZnSODs and for FeSOD and MnSOD in Arabidopsis rosette tissue. Additionally, subcellular fractionation studies revealed the presence of CSD2 and FeSOD protein within Arabidopsis chloroplasts. The seven SOD mRNAs and the four proteins identified were differentially regulated in response to various light regimes, ozone fumigation, and ultraviolet-B irradiation. To our knowledge, this is the first report of a large-scale analysis of the regulation of multiple SOD proteins in a plant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large family of isoquinoline sulfonamide compounds inhibits protein kinases by competing with adenosine triphosphates(ATP), yet interferes little with the activity of other ATP-using enzymes such as ATPases and adenylate cyclases. One such compound, N-(2-aminoethyl)-5-chloroisoquinoline-8-sulfonamide (CK17), is selective for casein kinase-1 isolated from a variety of sources. Here we report the crystal structure of the catalytic domain of Schizosaccharomyces pombe casein kinase-1 complexed with CK17, refined to a crystallographic R-factor of 17.8% at 2.5 angstrom resolution. The structure provides new insights into the mechanism of the ATP-competing inhibition and the origin of their selectivity toward different protein kinases. Selectivity for protein kinases versus other enzymes is achieved by hydrophobic contacts and the hydrogen bond with isoquinoline ring. We propose that the hydrogen bond involving the ring nitrogen-2 atom of the isoquinoline must be preserved, but that the ring can flip depending on the chemical substituents at ring positions 5 and 8. Selectivity for individual members of the protein kinase family is achieved primarily by interactions with these substituents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IA-2 is a 105,847 Da transmembrane protein that belongs to the protein tyrosine phosphatase family. Immunoperoxidase staining with antibody raised against IA-2 showed that this protein is expressed in human pancreatic islet cells. In this study, we expressed the full-length cDNA clone of IA-2 in a rabbit reticulocyte transcription/translation system and used the recombinant radiolabeled IA-2 protein to detect autoantibodies by immunoprecipitation. Coded sera (100) were tested: 50 from patients with newly diagnosed insulin-dependent diabetes mellitus (IDDM) and 50 from age-matched normal controls. Sixty-six percent of the sera from patients, but none of the sera from controls, reacted with IA-2. The same diabetic sera tested for autoantibodies to islet cells (ICA) by indirect immunofluorescence and glutamic acid decarboxylase (GAD65Ab) by depletion ELISA showed 68% and 52% positivity, respectively. Up to 86% of the IDDM patients had autoantibodies to IA-2 and/or GAD65. Moreover, greater than 90% (14 of 15) of the ICA-positive but GAD65Ab-negative sera had autoantibodies to IA-2. Absorption experiments showed that the immunofluorescence reactivity of ICA-positive sera was greatly reduced by prior incubation with recombinant IA-2 or GAD65 when the respective antibody was present. A little over one-half (9 of 16) of the IDDM sera that were negative for ICA were found to be positive for autoantibodies to IA-2 and/or GAD65, arguing that the immunofluorescence test for ICA is less sensitive than the recombinant tests for autoantibodies to IA-2 and GAD65. It is concluded that IA-2 is a major islet cell autoantigen in IDDM, and, together with GAD65, is responsible for much of the reactivity of ICA with pancreatic islets. Tests for the detection of autoantibodies to recombinant IA-2 and GAD65 may eventually replace ICA immunofluorescence for IDDM population screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA is the first SINE isolated from zebrafish (Danio rerio) exhibiting all the hallmarks of these tRNA-derived elements. DANA is unique in its clearly defined substructure of distinct cassettes. In contrast to generic SINE elements, DANA appears to have been assembled by insertions of short sequences into a progenitor, tRNA-derived element. Once associated with each other, these subunits were amplified as a new transposable element with such a remarkable success that DANA-related sequences comprise approximately 10% of the modern zebrafish genome. At least some of the sequences comprised by the full-length element were capable of movement, forming a new group of mobile, composite transposons, one of which caused an insertional mutation in the zebrafish no tail gene. Being present only in the genus Danio, and estimated to be as old as the genus itself, DANA may have played a role in Danio speciation by massive amplification and genome-wide dispersion. There are extensive DNA polymorphisms between zebrafish populations and strains detected by PCR amplification using primers specific to DANA, suggesting that the DANA element will be useful as a molecular tool for genetic and phylogenetic analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

USF is a family of transcription factors characterized by a highly conserved basic-helix-loop-helix-leucine zipper (bHLH-zip) DNA-binding domain. Two different USF genes, termed USF1 and USF2, are ubiquitously expressed in both humans and mice. The USF1 and USF2 proteins contain highly divergent transcriptional activation domains but share extensive homologies in the bHLH-zip region and recognize the same CACGTG DNA motifs. Although the DNA-binding and transcriptional activities of these proteins have been characterized, the biological function of USF is not well understood. Here, focus- and colony-formation assays were used to investigate the potential involvement of USF in the regulation of cellular transformation and proliferation. Both USF1 and USF2 inhibited the transformation of rat embryo fibroblasts mediated by Ras and c-Myc, a bHLH-zip transcription factor that also binds CACGTG motifs. DNA binding was required but not fully sufficient for inhibition of Myc-dependent transformation by USF, since deletion mutants containing only the DNA-binding domains of USF1 or USF2 produced partial inhibition. While the effect of USF1 was selective for Myc-dependent transformation, wild-type USF2 exerted in addition a strong inhibition of E1A-mediated transformation and a strong suppression of HeLa cell colony formation. These results suggest that members of the USF family may serve as negative regulators of cellular proliferation in two ways, one by antagonizing the transforming function of Myc, the other through a more general growth-inhibitory effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cdc18+ of Schizosaccharomyces pombe is a periodically expressed gene that is required for entry into S phase and for the coordination of S phase with mitosis. cdc18+ is related to the Saccharomyces cerevisiae gene CDC6, which has also been implicated in the control of DNA replication. We have identified a new Sch. pombe gene, orp1+, that encodes an 80-kDa protein with amino acid sequence motifs conserved in the Cdc18 and Cdc6 proteins. Genetic analysis indicates that orp1+ is essential for viability. Germinating spores lacking the orp1+ gene are capable of undergoing one or more rounds of DNA replication but fail to progress further, arresting as long cells with a variety of deranged nuclear structures. Unlike cdc18+, orp1+ is expressed constitutively during the cell cycle. cdc18+, CDC6, and orp1+ belong to a family of related genes that also includes the gene ORC1, which encodes a subunit of the origin recognition complex (ORC) of S. cerevisiae. The products of this gene family share a 250-amino acid domain that is highly conserved in evolution and contains several characteristic motifs, including a consensus purine nucleotide-binding motif. Among the members of this gene family, orp1+ is most closely related to S. cerevisiae ORC1. Thus, the protein encoded by orp1+ may represent a component of an Sch. pombe ORC. The orp1+ gene is also closely related to an uncharacterized putative human homologue. It is likely that the members of the cdc18/CDC6 family play key roles in the regulation of DNA replication during the cell cycle of diverse species from archaebacteria to man.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed differential gene expression in normal versus jun-transformed avian fibroblasts by using subtracted nucleic acid probes and differential nucleic acid hybridization techniques for the isolation of cDNA clones. One clone corresponded to a gene that was strongly expressed in a previously established quail (Coturnix japonica) embryo fibroblast line (VCD) transformed by a chimeric jun oncogene but whose expression was undetectable in normal quail embryo fibroblasts. Furthermore, the gene was expressed in quail or chicken fibroblast cultures that were freshly transformed by retroviral constructs carrying various viral or cellular jun alleles and in chicken fibroblasts transformed by the avian retrovirus ASV17 carrying the original viral v-jun allele. However, its expression was undetectable in a variety of established avian cell lines or freshly prepared avian fibroblast cultures transformed by other oncogenes or a chemical carcinogen. The nucleotide and deduced amino acid sequences of the cDNA clone were not identical to any sequence entries in the data bases but revealed significant similarities to avian beta-keratin genes; the highest degree of amino acid sequence identity was 63%. The gene, which we termed bkj, may represent a direct or indirect target for jun function.