32 resultados para Oncolytic viruses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA viruses are excellent experimental models for studying evolution under the theoretical framework of population genetics. For a proper justification of this thesis we have introduced some properties of RNA viruses that are relevant for studying evolution. On the other hand, population genetics is a reductionistic theory of evolution. It does not consider or make simplistic assumptions on the transformation laws within and between genotypic and phenotypic spaces. However, such laws are minimized in the case of RNA viruses because the phenotypic space maps onto the genotypic space in a much more linear way than on higher DNA-based organisms. Under experimental conditions, we have tested the role of deleterious and beneficial mutations in the degree of adaptation of vesicular stomatitis virus (VSV), a nonsegmented virus of negative strand. We also have studied how effective population size, initial genetic variability in populations, and environmental heterogeneity shapes the impact of mutations in the evolution of vesicular stomatitis virus. Finally, in an integrative attempt, we discuss pros and cons of the quasispecies theory compared with classic population genetics models for haploid organisms to explain the evolution of RNA viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The negative-strand RNA viruses are a broad group of animal viruses that comprise several important human pathogens, including influenza, measles, mumps, rabies, respiratory syncytial, Ebola, and hantaviruses. The development of new strategies to genetically manipulate the genomes of negative-strand RNA viruses has provided us with new tools to study the structure-function relationships of the viral components and their contributions to the pathogenicity of these viruses. It is also now possible to envision rational approaches--based on genetic engineering techniques--to design live attenuated vaccines against some of these viral agents. In addition, the use of different negative-strand RNA viruses as vectors to efficiently express foreign polypeptides has also become feasible, and these novel vectors have potential applications in disease prevention as well as in gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study we demonstrated that vesicular stomatitis virus (VSV) can be used as a vector to express a soluble protein in mammalian cells. Here we have generated VSV recombinants that express four different membrane proteins: the cellular CD4 protein, a CD4-G hybrid protein containing the ectodomain of CD4 and the transmembrane and cytoplasmic tail of the VSV glycoprotein (G), the measles virus hemagglutinin, or the measles virus fusion protein. The proteins were expressed at levels ranging from 23-62% that of VSV G protein and all were transported to the cell surface. In addition we found that all four proteins were incorporated into the membrane envelope of VSV along with the VSV G protein. The levels of incorporation of these proteins varied from 6-31% of that observed for VSV G. These results suggest that many different membrane proteins may be co-incorporated quite efficiently with VSV G protein into budding VSV virus particles and that specific signals are not required for this co-incorporation process. In fact, the CD4-G protein was incorporated with the same efficiency as wild type CD4. Electron microscopy of virions containing CD4 revealed that the CD4 molecules were dispersed throughout the virion envelope among the trimeric viral spike glycoproteins. The recombinant VSV-CD4 virus particles were about 18% longer than wild type virions, reflecting the additional length of the helical nucleocapsid containing the extra gene. Recombinant VSVs carrying foreign antigens on the surface of the virus particle may be useful for viral targeting, membrane protein purification, and for generation of immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of cationic organic dyes (methylene blue, thionine, and thiopyronine) on Qbeta bacteriophage was studied by UV-visible and fluorescence spectroscopy. The dyes have shown a strong affinity to the virus and some have been used as sensitizers for photo-induced inactivation of virus. In the methylene blue concentration range of 0.1-5 microM and at high ratios of dye to virus (greater than 1000 dye molecules per virion), the dyes bind as aggregates on the virus. Aggregation lowers the efficiency of photoinactivation because of self-quenching of the dye. At lower ratios of dye to virus (lower than 500 dye molecules per virion), the dye binds to the virus as a monomer. Fluorescence polarization and time-resolved studies of the fluorescence support the conclusions based on fluorescence quenching. Increasing the ionic strength (adding NaCl) dissociates bound dye aggregates on the virus and releases monomeric dye into the bulk solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human endogenous retroviruses (HERVs) are very likely footprints of ancient germ-cell infections. HERV sequences encompass about 1% of the human genome. HERVs have retained the potential of other retroelements to retrotranspose and thus to change genomic structure and function. The genomes of almost all HERV families are highly defective. Recent progress has allowed the identification of the biologically most active family, HTDV/HERV-K, which codes for viral proteins and particles and is highly expressed in germ-cell tumors. The demonstrable and potential roles of HTDV/HERV-K as well as of other human elements in disease and in maintaining genome plasticity are illustrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary theory predicts the recent spread of primate immunodeficiency viruses (PIVs) to new human populations to be accompanied by positive selection in response to new host environments and/or by random genetic drift. I assess evidence for positive selection in human and chimpanzee PIVs type I (PIV1s), using ratios of synonymous to nonsynonymous nucleotide change based on branch lengths and outgroup rooting. Ratios are smaller for PIV1s from humans than for PIV1 from a chimpanzee for the pol, gag, and env glycoprotein 120 (gp120) regions, indicating greater effects of positive selection in PIV1s from humans. Parsimony-based relative rate tests for amino acid changes showed significant differences between PIV1s from humans and chimpanzees in 18 of 48 pairwise comparisons, with all 18 showing faster rates of change in PIV1s from humans. This study indicates that in some instances, the recent evolution of human PIV1s follows a speciational pattern, in which increased diversification of taxa is correlated with greater amounts of character change appearing and being maintained through time. This extends the generality of the speciational pattern to a group of organisms (viruses) having the fastest known rates of anagenetic change for nucleotide characters and indicates that comprehensive understanding of PIV1 evolution requires consideration of both anagenetic change within viral lineages and the relative historical success of different viral clades. Phylogenetic analyses show that neither PIV1s infecting humans nor those infecting chimpanzees represent monophyletic groups and suggest multiple host-species shifts for PIV1s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In late 1994 and early 1995, Ebola (EBO) virus dramatically reemerged in Africa, causing human disease in the Ivory Coast and Zaire. Analysis of the entire glycoprotein genes of these viruses and those of other EBO virus subtypes has shown that the virion glycoprotein (130 kDa) is encoded in two reading frames, which are linked by transcriptional editing. This editing results in the addition of an extra nontemplated adenosine within a run of seven adenosines near the middle of the coding region. The primary gene product is a smaller (50-70 kDa), nonstructural, secreted glycoprotein, which is produced in large amounts and has an unknown function. Phylogenetic analysis indicates that EBO virus subtypes are genetically diverse and that the recent Ivory Coast isolate represents a new (fourth) subtype of EBO virus. In contrast, the EBO virus isolate from the 1995 outbreak in Kikwit, Zaire, is virtually identical to the virus that caused a similar epidemic in Yambuku, Zaire, almost 20 years earlier. This genetic stability may indicate that EBO viruses have coevolved with their natural reservoirs and do not change appreciably in the wild.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explain the pathogenesis of autoimmunity, we hypothesize that following an infection the immune response spreads to tissue-specific autoantigens in genetically predisposed individuals eventually determining progression to disease. Molecular mimicry between viral and self antigens could, in some instances, initiate autoimmunity. Local elicitation of inflammatory cytokines following infection probably plays a pivotal role in determining loss of functional tolerance to self autoantigens and the destructive activation of autoreactive cells. We also describe the potential role of interleukin 10, a powerful B-cell activator, in increasing the efficiency of epitope recognition, that could well be crucial to the progression toward disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological processes often require that a single gene product participate in multiple types of molecular interactions. Viruses with quasiequivalent capsids provide an excellent paradigm for studying such phenomena because identical protein subunits are found in different structural environments. Differences in subunit joints may be controlled by protein segments, duplex or single-stranded RNA, metal ions, or some combination of these. Each of the virus groups examined display a distinctive mechanism for switching interface interactions, illustrating the magnitude of options that are likely to be found in other biological systems. In addition to determining capsid morphology, assembly controls the timing of autocatalytic maturation cleavage of the viral subunits that is required for infectivity in picorna-, noda-, and tetraviruses. The mechanism of assembly-dependent cleavage is conserved in noda- and tetraviruses, although the quaternary structures of the capsids are different as are the molecular switches that control subunit interfaces. The function of the cleavage in picorna-, noda-, and tetraviruses is probably to release polypeptides that participate in membrane translocation of RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To elucidate the functions of human immunodeficiency virus type 1 (HIV-1) genes in a nonhuman primate model, we have constructed infectious recombinant viruses (chimeras) between the pathogenic molecular clone of simian immunodeficiency virus (SIV) SIVmac239 and molecular clones of HIV-1 that differ in phenotypic properties controlled by the env gene. HIV-1SF33 is a T-cell-line-tropic virus which induces syncytia, and HIV-1SF162 is a macrophage-tropic virus that does not induce syncytia. A DNA fragment encoding tat, rev, and env (gp160) of SIVmac239 has been replaced with the counterpart genetic region of HIV-1SF33 and HIV-1SF162 to derive chimeric recombinant simian/human immunodeficiency virus (SHIV) strains SHIVSF33 and SHIVSF162, respectively. In the acute infection stage, macaques inoculated with SHIVSF33 had levels of viremia similar to macaques infected with SIVmac239, whereas virus loads were 1/10th to 1/100th those in macaques infected with SHIVSF162. Of note is the relatively small amount of virus detected in lymph nodes of SHIVSF162-infected macaques. In the chronic infection stage, macaques infected with SHIVSF33 also showed higher virus loads than macaques infected with SHIVSF162. Virus persists for over 1 year, as demonstrated by PCR for amplification of viral DNA in all animals and by virus isolation in some animals. Antiviral antibodies, including antibodies to the HIV-1 env glycoprotein (gp160), were detected; titers of antiviral antibodies were higher in macaques infected with SHIVSF33 than in macaques infected with SHIVSF162. Although virus has persisted for over 1 year after inoculation, these animals have remained healthy with no signs of immunodeficiency. These findings demonstrate the utility of the SHIV/macaque model for analyzing HIV-1 env gene functions and for evaluating vaccines based on HIV-1 env antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to their well-recognized hepatotropism, all hepatitis B viruses (HBVs) display marked species specificity, growing poorly or not at all in species other than those closely related to their natural hosts. We have examined the molecular basis for this narrow host range, using duck HBV (DHBV) and heron HBV (HHBV) as a model system. HHBV virions will not infect ducks in vivo and infect cultured duck hepatocytes extremely inefficiently in vitro. Mutant HHBV genomes lacking all viral envelope proteins (HHBV env-) can be complemented in trans with DHBV envelope proteins; the resulting pseudotyped virions can efficiently infect duck hepatocytes. Further complementation analysis reveals that of the two viral surface proteins (L and S), it is the L protein that determines host range. Pseudotyping of HHBV env- with DHBV/HHBV chimeric envelope proteins reveals that replacement of as few as 69 amino acids of the pre-S domain of the HHBV L protein by their DHBV counterparts is sufficient to permit infection of duck hepatocytes. These studies indicate that the species-specificity of hepadnaviral infection is determined at the level of virus entry and is governed by the pre-S domain of the viral L protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

S-Adenosylhomocysteine hydrolase (SAHH) is a key enzyme in transmethylation reactions that use S-adenosylmethionine as the methyl donor. Because of the importance of SAHH in a number of S-adenosylmethionine-dependent transmethylation reactions, particularly the 5' capping of mRNA during viral replication, SAHH has been considered as a target of potential antiviral agents against animal viruses. To test the possibility of engineering a broad type of resistance to plant viruses, we expressed the antisense RNA for tobacco SAHH in transgenic tobacco plants. As expected, transgenic plants constitutively expressing an anti-sense SAHH gene showed resistance to infection by various plant viruses. Among those plants, about half exhibited some level of morphological change (typically stunting). Analysis of the physiological change in those plants showed that they contained excess levels of cytokinin. Because cytokinin has been found to induce acquired resistance, there is also a strong possibility that the observed resistance was induced by cytokinin.