182 resultados para OF-FUNCTION MUTATIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rad51 is crucial not only in homologous recombination and recombinational repair but also in normal cellular growth. To address the role of Rad51 in normal cell growth we investigated morphological changes of cells after overexpression of wild-type and a dominant negative form of Rad51 in fission yeast. Rhp51, a Rad51 homolog in Schizosaccharomyces pombe, has a highly conserved ATP-binding motif. Rhp51 K155A, which has a single substitution in this motif, failed to rescue hypersensitivity of a rhp51Δ mutant to methyl methanesulfonate (MMS) and UV, whereas it binds normally to Rhp51 and Rad22, a Rad52 homolog. Two distinct cellular phenotypes were observed when Rhp51 or Rhp51 K155A was overexpressed in normal cells. Overexpression of Rhp51 caused lethality in the absence of DNA-damaging agents, with acquisition of a cell cycle mutant phenotype and accumulation of a 1C DNA population. On the other hand, overexpression of Rhp51 K155A led to a delay in G2 with decondensed nuclei, which resembled the phenotype of rhp51Δ. The latter also exhibited MMS and UV sensitivity, indicating that Rhp51 K155A has a dominant negative effect. These results suggest an association between DNA replication and Rad51 function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the dynamic properties of the switch I region of the GTP-binding protein Ras by using mutants of Thr-35, an invariant residue necessary for the switch function. Here we show that these mutants, previously used as partial loss-of-function mutations in cell-based assays, have a reduced affinity to Ras effector proteins without Thr-35 being involved in any interaction. The structure of Ras(T35S)⋅GppNHp was determined by x-ray crystallography. Whereas the overall structure is very similar to wildtype, residues from switch I are completely invisible, indicating that the effector loop region is highly mobile. 31P-NMR data had indicated an equilibrium between two rapidly interconverting conformations, one of which (state 2) corresponds to the structure found in the complex with the effectors. 31P-NMR spectra of Ras mutants (T35S) and (T35A) in the GppNHp form show that the equilibrium is shifted such that they occur predominantly in the nonbinding conformation (state 1). On addition of Ras effectors, Ras(T35S) but not Ras(T35A) shift to positions corresponding to the binding conformation. The structural data were correlated with kinetic experiments that show two-step binding reaction of wild-type and (T35S)Ras with effectors requires the existence of a rate-limiting isomerization step, which is not observed with T35A. The results indicate that minor changes in the switch region, such as removing the side chain methyl group of Thr-35, drastically affect dynamic behavior and, in turn, interaction with effectors. The dynamics of the switch I region appear to be responsible for the conservation of this threonine residue in GTP-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher plants express several isoforms of vacuolar and cell wall invertases (CWI), some of which are inactivated by inhibitory proteins at certain stages of plant development. We have purified an apoplasmic inhibitor (INH) of tobacco (Nicotiana tabacum) CWI to homogeneity. Based on sequences from tryptic fragments, we have isolated a full-length INH-encoding cDNA clone (Nt-inh1) via a reverse transcriptase-polymerase chain reaction. Southern-blot analysis revealed that INH is encoded by a single- or low-copy gene. Comparison with expressed sequence tag clones from Arabidopsis thaliana and Citrus unshiu indicated the presence of Nt-inh1-related proteins in other plants. The recombinant Nt-inh1-encoded protein inhibits CWI from tobacco and Chenopodium rubrum suspension-cultured cells and vacuolar invertase from tomato (Lycopersicon esculentum) fruit, whereas yeast invertase is not affected. However, only in the homologous system is the inhibition modulated by the concentration of Suc as previously shown for INH isolated from tobacco cells. Highly specific binding of INH to CWI could be shown by affinity chromatography of a total cell wall protein fraction on immobilized recombinant Nt-inh1 protein. RNA-blot analysis of relative transcript ratios for Nt-inh1 and CWI in different parts of adult tobacco plants revealed that the expression of both proteins is not always coordinate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact role of the pfmdr1 gene in the emergence of drug resistance in the malarial parasite Plasmodium falciparum remains controversial. pfmdr1 is a member of the ATP binding cassette (ABC) superfamily of transporters that includes the mammalian P-glycoprotein family. We have introduced wild-type and mutant variants of the pfmdr1 gene in the yeast Saccharomyces cerevisiae and have analyzed the effect of pfmdr1 expression on cellular resistance to quinoline-containing antimalarial drugs. Yeast transformants expressing either wild-type or a mutant variant of mouse P-glycoprotein were also analyzed. Dose-response studies showed that expression of wild-type pfmdr1 causes cellular resistance to quinine, quinacrine, mefloquine, and halofantrine in yeast cells. Using quinacrine as substrate, we observed that increased resistance to this drug in pfmdr1 transformants was associated with decreased cellular accumulation and a concomitant increase in drug release from preloaded cells. The introduction of amino acid polymorphisms in TM11 of Pgh-1 (pfmdr1 product) associated with drug resistance in certain field isolates of P. falciparum abolished the capacity of this protein to confer drug resistance. Thus, these findings suggest that Pgh-1 may act as a drug transporter in a manner similar to mammalian P-glycoprotein and that sequence variants associated with drug-resistance pfmdr1 alleles behave as loss of function mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cu,Zn-superoxide dismutase (SOD) is known to be a locus of mutation in familial amyotrophic lateral sclerosis (FALS). Transgenic mice that express a mutant Cu,Zn-SOD, Gly-93--> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the FALS mutant, G93A, and wild-type cDNA of human Cu,Zn-SOD, overexpressed them in Sf9 insect cells, purified the proteins, and studied their enzymic activities for catalyzing the dismutation of superoxide anions and the generation of free radicals with H2O2 as substrate. Our results showed that both enzymes contain one copper ion per subunit and have identical dismutation activity. However, the free radical-generating function of the G93A mutant, as measured by the spin trapping method, is enhanced relative to that of the wild-type enzyme, particularly at lower H2O2 concentrations. This is due to a small, but reproducible, decrease in the value of Km for H2O2 for the G93A mutant, while the kcat is identical for both enzymes. Thus, the ALS symptoms observed in G93A transgenic mice are not caused by the reduction of Cu,Zn-SOD activity with the mutant enzyme; rather, it is induced by a gain-of-function, an enhancement of the free radical-generating function. This is consistent with the x-ray crystallographic studies showing the active channel of the FALS mutant is slightly larger than that of the wild-type enzyme; thus, it is more accessible to H2O2. This gain-of-function, in part, may provide an explanation for the association between ALS and Cu,Zn-SOD mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t(2;13) translocation of alveolar rhabdomyosarcoma results in tumor-specific expression of a chimeric transcription factor containing the N-terminal DNA-binding domain of PAX3 and the C-terminal transactivation domain of FKHR. Here we have tested the hypothesis that PAX3-FKHR gains function relative to PAX3 as a consequence of switching PAX3 and FKHR transactivation domains, which were previously shown to have similar potency but distinct structural motifs. In transient cotransfection assays with human expression constructs, we have demonstrated the increased ability of PAX3-FKHR to activate transcription of a reporter gene located downstream of multimerized e5, PRS-9, or CD19 DNA-binding sites in three cell lines. For example, PAX3-FKHR was 100-fold more potent than PAX3 as an activator binding to e5 sites in NIH 3T3 cells. To compare transactivation potency independent of PAX3-specific DNA binding, we tested GAL4 fusions of full-length PAX3 and PAX3-FKHR or their respective C-terminal transactivation domains on a reporter with GAL4 DNA-binding sites. In this context, full-length PAX3-FKHR was also much more potent than PAX3. Additionally, the activity of each full-length protein was decreased relative to its C-terminal domain, demonstrating that N-terminal sequences are inhibitory. By deletion analysis, we mapped a bipartite cis-acting inhibitory domain to the same subregions within the DNA-binding domains of both PAX3 and PAX3-FKHR. We have shown, however, that the structurally distinct transactivation domains of PAX3 and PAX3-FKHR differ 10- to 100-fold in their susceptibility to inhibition, thus elucidating a mechanism by which PAX3 gains enhanced function during oncogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pax-6 genes of vertebrates and Drosophila encode transcription factors with highly conserved paired- and homeodomains. They are expressed in the nervous system and the developing eyes. Loss-of-function mutations in mammals and flies lead to a reduction or absence of the eyes. By ectopic expression of Pax-6 in Drosophila ectopic eyes can be induced, indicating a determinative role in eye morphogenesis. We have isolated a Pax-6 homolog of the ribbonworm Lineus sanguineus. This gene shares extensive sequence identity and several conserved splice sites with the mammalian and Drosophila genes. During head regeneration the L. sanguineus Pax-6 homolog is expressed in the central nervous system, in the cerebral organ, and in the eye region. These findings support the hypothesis that Pax-6 was present in primitive metazoa before the evolutionary separation of vertebrates and arthropods and suggest a fundamental role in eye and central nervous system development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A genetic approach has been established that combines the advantages of blastocyst complementation with the experimental attributes of the developing lens for the functional analysis of genes governing cellular proliferation, terminal differentiation, and apoptosis. This lens complementation system (LCS) makes use of a mutant mouse strain, aphakia (ak), homozygotes of which fail to develop an ocular lens. We demonstrate that microinjection of wild-type embryonic stem (ES) cells into ak/ak blastocysts produces chimeras with normal ES-cell-derived lenses and that microinjection of Rb-/- ES cells generates an aberrant lens phenotype identical to that obtained through conventional gene targeting methodology. Our determination that a cell autonomous defect underlies the aphakia condition assures that lenses generated through LCS are necessarily ES-cell-derived. LCS provides for the rapid phenotypic analysis of loss-of-function mutations, circumvents the need for germ-line transmission of null alleles, and, most significantly, facilitates the study of essential genes whose inactivation is associated with early lethal phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malignant mesotheliomas (MMs) are aggressive tumors that develop most frequently in the pleura of patients exposed to asbestos. In contrast to many other cancers, relatively few molecular alterations have been described in MMs. The most frequent numerical cytogenetic abnormality in MMs is loss of chromosome 22. The neurofibromatosis type 2 gene (NF2) is a tumor suppressor gene assigned to chromosome 22q which plays an important role in the development of familial and spontaneous tumors of neuroectodermal origin. Although MMs have a different histogenic derivation, the frequent abnormalities of chromosome 22 warranted an investigation of the NF2 gene in these tumors. Both cDNAs from 15 MM cell lines and genomic DNAs from 7 matched primary tumors were analyzed for mutations within the NF2 coding region. NF2 mutations predicting either interstitial in-frame deletions or truncation of the NF2-encoded protein (merlin) were detected in eight cell lines (53%), six of which were confirmed in primary tumor DNAs. In two samples that showed NF2 gene transcript alterations, no genomic DNA mutations were detected, suggesting that aberrant splicing may constitute an additional mechanism for merlin inactivation. These findings implicate NF2 in the oncogenesis of primary MMs and provide evidence that this gene can be involved in the development of tumors other than nervous system neoplasms characteristic of the NF2 disorder. In addition, unlike NF2-related tumors, MM derives from the mesoderm; malignancies of this origin have not previously been associated with frequent alterations of the NF2 gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germline loss-of-function mutations at the Wilms tumor (WT) suppressor locus WT1 are associated with a predisposition to WTs and mild genital system anomalies. In contrast, germ-line missense mutations within the WT1 gene encoding the DNA-binding domain often yield a more severe phenotype consisting of WT, sexual ambiguity, and renal nephropathy. In this report, we demonstrate that the products of mutant alleles that impair DNA recognition can antagonize WT1-mediated transcriptional repression. We demonstrate that WT1 can self-associate in vitro and in vivo and that the responsible domain maps to the amino-terminal region of the protein. Oligomers of full-length protein form less efficiently or produce less stable complexes than oligomers between truncated polypeptides and full-length protein. Our data suggest a molecular mechanism to explain how WT1 mutations may act in deregulating cellular proliferation and differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type 1 angiotensin II (AT1) receptor is well characterized but the type 2 (AT2) receptor remains an enigma. We tested the hypothesis that the AT2 receptor can modulate the growth of vascular smooth muscle cells by transfecting an AT2 receptor expression vector into the balloon-injured rat carotid artery and observed that overexpression of the AT2 receptor attenuated neointimal formation. In cultured smooth muscle cells, AT2 receptor transfection reduced proliferation and inhibited mitogen-activated protein kinase activity. Furthermore, we demonstrated that the AT2 receptor mediated the developmentally regulated decrease in aortic DNA synthesis at the latter stages of gestation. These results suggest that the AT2 receptor exerts an antiproliferative effect, counteracting the growth action of AT1 receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA repair is required by organisms to prevent the accumulation of mutations and to maintain the integrity of genetic information. Mammalian cells that have been treated with agents that damage DNA have an increase in p53 levels, a p53-dependent arrest at G1 in the cell cycle, and a p53-dependent apoptotic response. It has been hypothesized that this block in cell cycle progression is necessary to allow time for DNA repair or to direct the damaged cell to an apoptotic pathway. This hypothesis predicts that p53-deficient cells would have an abnormal apoptotic response and exhibit a "mutator" phenotype. Using a sensitive assay for the accumulation of point mutations, small deletions, and insertions, we have directly tested whether p53-deficient cells exhibit an increased frequency of mutation before and after exposure to DNA-damaging agents. We report that wild-type and p53-deficient fibroblasts, thymocytes, and tumor tissue have indistinguishable rates of point mutation accumulation in a transgenic lacI target gene. These results suggest that the role of p53 in G1 checkpoint control and tumor suppression does not affect the accumulation of point mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coexpression in Xenopus oocytes of the inwardly rectifying guanine nucleotide binding (G)-protein-gated K channel GIRK1 with a myristoylated modification of the (putative) cytosolic C-terminal tail [GIRK1 aa 183-501 fused in-frame to aa 1-15 of p60src and denoted src+ (183-501)] leads to a high degree of inhibition of the inward G-protein-gated K+ current. The nonmyristoylated segment, src- (183-501), is not active. Although some interference with assembly is not precluded, the evidence indicates that the main mechanism of inhibition is interference with functional activation of the channel by G proteins. In part, the tail functions as a blocking particle similar to a "Shaker ball"; it may also function by competing for the available supply of free G beta gamma liberated by hormone activation of a seven-helix receptor. The non-G-protein-gated weak inward rectifier ROMK1 is less effectively inhibited, and a Shaker K channel was not inhibited. Immunological assays show the presence of a high concentration of src+ (183-501) in the plasma membrane and the absence of any membrane forms for the nonmyristoylated segment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique is described that greatly increases the efficiency of recovering specific locus point mutations in zebrafish (Danio rerio). Founder individuals that were mosaic for point mutations were produced by mutagenizing postmeiotic gametes with the alkylating agent N-ethyl-N-nitrosourea. Under optimal conditions, each founder carried an average of 10 mutations affecting genes required for embryogenesis. Moreover, approximately 2% of these founders transmitted new mutations at any prespecified pigmentation locus. Analyses of new pigmentation mutations confirmed that most were likely to be point mutations. Thus, mutagenesis of postmeiotic gametes with N-ethyl-N-nitrosourea yielded frequencies of point mutations at specific loci that were 10- to 15-fold higher than previously achieved in zebrafish. Our procedure should, therefore, greatly facilitate recovery of multiple mutant alleles at any locus of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 10-30% of hypertrophic cardiomyopathy kindreds, the disease is caused by > 29 missense mutations in the cardiac beta-myosin heavy chain (MYH7) gene. The amino acid sequence similarity between chicken skeletal muscle and human beta-cardiac myosin and the three-dimensional structure of the chicken skeletal muscle myosin head have provided the opportunity to examine the structural consequences of these naturally occurring mutations in human beta-cardiac myosin. This study demonstrates that the mutations are related to distinct structural and functional domains. Twenty-four are clustered around four specific locations in the myosin head that are (i) associated with the actin binding interface, (ii) around the nucleotide binding site, (iii) adjacent to the region that connects the two reactive cysteine residues, and (iv) in close proximity to the interface of the heavy chain with the essential light chain. The remaining five mutations are in the myosin rod. The locations of these mutations provide insight into the way they impair the functioning of this molecular motor and also into the mechanism of energy transduction.