38 resultados para Nmda Receptors
Resumo:
Block of the channel of N-methyl-d-aspartate (NMDA) receptors by external Mg2+ (Mgo2+) has broad implications for the many physiological and pathological processes that depend on NMDA receptor activation. An essential property of channel block by Mgo2+ is its powerful voltage dependence. A widely cited explanation for the strength of the voltage dependence of block is that the Mgo2+-binding site is located deep in the channel of NMDA receptors; Mgo2+ then would sense most of the membrane potential field during block. However, recent electrophysiological and mutagenesis studies suggest that the blocking site cannot be deep enough to account for the voltage dependence of Mgo2+ block. Here we describe the basis for this discrepancy: the magnitude and voltage dependence of channel block by Mgo2+ are strongly regulated by external and internal permeant monovalent cations. Our data support a model in which access to the channel by Mgo2+ is prevented when permeant ion-binding sites at the external entrance to the channel are occupied. Mgo2+ can block the channel only when the permeant ion-binding sites are unoccupied and then can either unblock back to the external solution or permeate the channel. Unblock to the external solution is prevented if external permeant ions bind while Mg2+ blocks the channel, although permeation is still permitted. The model provides an explanation for the strength of the voltage dependence of Mgo2+ block and quantifies the interdependence of permanent and blocking ion binding to NMDA receptors.
Resumo:
Poly(ADP-ribose) polymerase (PARP) transfers ADP ribose groups from NAD+ to nuclear proteins after activation by DNA strand breaks. PARP overactivation by massive DNA damage causes cell death via NAD+ and ATP depletion. Heretofore, PARP has been thought to be inactive under basal physiologic conditions. We now report high basal levels of PARP activity and DNA strand breaks in discrete neuronal populations of the brain, in ventricular ependymal and subependymal cells and in peripheral tissues. In some peripheral tissues, such as skeletal muscle, spleen, heart, and kidney, PARP activity is reduced only partially in mice with PARP-1 gene deletion (PARP-1−/−), implicating activity of alternative forms of PARP. Glutamate neurotransmission involving N-methyl-d-aspartate (NMDA) receptors and neuronal nitric oxide synthase (nNOS) activity in part mediates neuronal DNA strand breaks and PARP activity, which are diminished by NMDA antagonists and NOS inhibitors and also diminished in mice with targeted deletion of nNOS gene (nNOS−/−). An increase in NAD+ levels after treatment with NMDA antagonists or NOS inhibitors, as well as in nNOS−/− mice, indicates that basal glutamate-PARP activity regulates neuronal energy dynamics.
Resumo:
Auditory filial imprinting in the domestic chicken is accompanied by a dramatic loss of spine synapses in two higher associative forebrain areas, the mediorostral neostriatum/hyperstriatum ventrale (MNH) and the dorsocaudal neostriatum (Ndc). The cellular mechanisms that underlie this learning-induced synaptic reorganization are unclear. We found that local pharmacological blockade of N-methyl-d-aspartate (NMDA) receptors in the MNH, a manipulation that has been shown previously to impair auditory imprinting, suppresses the learning-induced spine reduction in this region. Chicks treated with the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) during the behavioral training for imprinting (postnatal day 0–2) displayed similar spine frequencies at postnatal day 7 as naive control animals, which, in both groups, were significantly higher than in imprinted animals. Because the average dendritic length did not differ between the experimental groups, the reduced spine frequency can be interpreted as a reduction of the total number of spine synapses per neuron. In the Ndc, which is reciprocally connected with the MNH and not directly influenced by the injected drug, learning-induced spine elimination was partly suppressed. Spine frequencies of the APV-treated, behaviorally trained but nonimprinted animals were higher than in the imprinted animals but lower than in the naive animals. These results provide evidence that NMDA receptor activation is required for the learning-induced selective reduction of spine synapses, which may serve as a mechanism of information storage specific for juvenile emotional learning events.
Resumo:
Excitotoxicity, resulting from sustained activation of glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype, is considered to play a causative role in the etiology of ischemic stroke and several neurodegenerative diseases. The NMDA receptor is therefore a target for the development of neuroprotective agents. Here, we identify an N-benzylated triamine (denoted as NBTA) as a highly selective and potent NMDA-receptor channel blocker selected by screening a reduced dipeptidomimetic synthetic combinatorial library. NBTA blocks recombinant NMDA receptors expressed in Xenopus laevis oocytes with a mean IC50 of 80 nM; in contrast, it does not block GluR1, a glutamate receptor of the non-NMDA subtype. The blocking activity of NBTA on NMDA receptors exhibits the characteristics of an open-channel blocker: (i) no competition with agonists, (ii) voltage dependence, and (iii) use dependence. Significantly, NBTA protects rodent hippocampal neurons from NMDA receptor, but not kainate receptor-mediated excitotoxic cell death, in agreement with its selective action on the corresponding recombinant receptors. Mutagenesis data indicate that the N site, a key asparagine on the M2 transmembrane segment of the NR1 subunit, is the main determinant of the blocker action. The results highlight the potential of this compound as a neuroprotectant.
Resumo:
In both humans and animals, the hippocampus is critical to memory across modalities of information (e.g., spatial and nonspatial memory) and plays a critical role in the organization and flexible expression of memories. Recent studies have advanced our understanding of cellular basis of hippocampal function, showing that N-methyl-d-aspartate (NMDA) receptors in area CA1 are required in both the spatial and nonspatial domains of learning. Here we examined whether CA1 NMDA receptors are specifically required for the acquisition and flexible expression of nonspatial memory. Mice lacking CA1 NMDA receptors were impaired in solving a transverse patterning problem that required the simultaneous acquisition of three overlapping odor discriminations, and their impairment was related to an abnormal strategy by which they failed to adequately sample and compare the critical odor stimuli. By contrast, they performed normally, and used normal stimulus sampling strategies, in the concurrent learning of three nonoverlapping concurrent odor discriminations. These results suggest that CA1 NMDA receptors play a crucial role in the encoding and flexible expression of stimulus relations in nonspatial memory.
The spinal biology in humans and animals of pain states generated by persistent small afferent input
Resumo:
Behavioral models indicate that persistent small afferent input, as generated by tissue injury, results in a hyperalgesia at the site of injury and a tactile allodynia in areas adjacent to the injury site. Hyperalgesia reflects a sensitization of the peripheral terminal and a central facilitation evoked by the persistent small afferent input. The allodynia reflects a central sensitization. The spinal pharmacology of these pain states has been defined in the unanesthetized rat prepared with spinal catheters for injection and dialysis. After tissue injury, excitatory transmitters (e.g., glutamate and substance P) acting though N-methyl-d-aspartate (NMDA) and neurokinin 1 receptors initiate a cascade that evokes release of (i) NO, (ii) cyclooxygenase products, and (iii) activation of several kinases. Spinal dialysis show amino acid and prostanoid release after cutaneous injury. Spinal neurokinin 1, NMDA, and non-NMDA receptors enhance spinal prostaglandin E2 release. Spinal prostaglandins facilitate release of spinal amino acids and peptides. Activation by intrathecal injection of receptors on spinal C fiber terminals (μ,/∂ opiate, α2 adrenergic, neuropeptide Y) prevents release of primary afferent peptides and spinal amino acids and blocks acute and facilitated pain states. Conversely, consistent with their role in facilitated processing, NMDA, cyclooxygenase 2, and NO synthase inhibitors act to diminish only hyperalgesia. Importantly, spinal delivery of several of these agents diminishes human injury pain states. This efficacy emphasizes (i) the role of facilitated states in humans, (ii) shows the importance of spinal systems in human pain processing, and (iii) indicates that these preclinical mechanisms reflect processes that regulate the human pain experience.
Resumo:
Tissue injury is associated with sensitization of nociceptors and subsequent changes in the excitability of central (spinal) neurons, termed central sensitization. Nociceptor sensitization and central sensitization are considered to underlie, respectively, development of primary hyperalgesia and secondary hyperalgesia. Because central sensitization is considered to reflect plasticity at spinal synapses, the spinal cord has been the principal focus of studies of mechanisms of hyperalgesia. Not surprisingly, glutamate, acting at a spinal N-methyl-d-aspartate (NMDA) receptor, has been implicated in development of secondary hyperalgesia associated with somatic, neural, and visceral structures. Downstream of NMDA receptor activation, spinal nitric oxide (NO⋅), protein kinase C, and other mediators have been implicated in maintaining such hyperalgesia. Accumulating evidence, however, reveals a significant contribution of supraspinal influences to development and maintenance of hyperalgesia. Spinal cord transection prevents development of secondary, but not primary, mechanical and/or thermal hyperalgesia after topical mustard oil application, carrageenan inflammation, or nerve-root ligation. Similarly, inactivation of the rostral ventromedial medulla (RVM) attenuates hyperalgesia and central sensitization in several models of persistent pain. Inhibition of medullary NMDA receptors or NO⋅ generation attenuates somatic and visceral hyperalgesia. In support, topical mustard oil application or colonic inflammation increases expression of NO⋅ synthase in the RVM. These data suggest a prominent role for the RVM in mediating the sensitization of spinal neurons and development of secondary hyperalgesia. Results to date suggest that peripheral injury and persistent input engage spinobulbospinal mechanisms that may be the prepotent contributors to central sensitization and development of secondary hyperalgesia.
Resumo:
Antillatoxin (ATX) is a lipopeptide derived from the pantropical marine cyanobacterium Lyngbya majuscula. ATX is neurotoxic in primary cultures of rat cerebellar granule cells, and this neuronal death is prevented by either N-methyl-d-aspartate (NMDA) receptor antagonists or tetrodotoxin. To further explore the potential interaction of ATX with voltage-gated sodium channels, we assessed the influence of tetrodotoxin on ATX-induced Ca2+ influx in cerebellar granule cells. The rapid increase in intracellular Ca2+ produced by ATX (100 nM) was antagonized in a concentration-dependent manner by tetrodotoxin. Additional, more direct, evidence for an interaction with voltage-gated sodium channels was derived from the ATX-induced allosteric enhancement of [3H]batrachotoxin binding to neurotoxin site 2 of the α subunit of the sodium channel. ATX, moreover, produced a strong synergistic stimulation of [3H]batrachotoxin binding in combination with brevetoxin, which is a ligand for neurotoxin site 5 on the voltage-gated sodium channel. Positive allosteric interactions were not observed between ATX and either α-scorpion toxin or the pyrethroid deltamethrin. That ATX interaction with voltage-gated sodium channels produces a gain of function was demonstrated by the concentration-dependent and tetrodotoxin-sensitive stimulation of 22Na+ influx in cerebellar granule cells exposed to ATX. Together these results demonstrate that the lipopeptide ATX is an activator of voltage-gated sodium channels. The neurotoxic actions of ATX therefore resemble those of brevetoxins that produce neural insult through depolarization-evoked Na+ load, glutamate release, relief of Mg2+ block of NMDA receptors, and Ca2 + influx.
Resumo:
Long-term potentiation (LTP) is a form of synaptic memory that may subserve developmental and behavioral plasticity. An intensively investigated form of LTP is dependent upon N-methyl-D-aspartate (NMDA) receptors and can be elicited in the dentate gyrus and hippocampal CA1. Induction of this type of LTP is triggered by influx of Ca2+ through activated NMDA receptors, but the downstream mechanisms of induction, and even more so of LTP maintenance, remain controversial. It has been reported that the function of NMDA receptor channel can be regulated by protein tyrosine kinases and protein phosphatases and that inhibition of protein tyrosine kinases impairs induction of LTP. Herein we report that LTP in the dentate gyrus is specifically correlated with tyrosine phosphorylation of the NMDA receptor subunit 2B in an NMDA receptor-dependent manner. The effect is observed with a delay of several minutes after LTP induction and persists in vivo for several hours. The potential relevance of this post-translational modification to mechanisms of LTP and circuit plasticity is discussed.
Resumo:
N-Methyl-D-aspartate (NMDA) receptors are blocked at hyperpolarizing potentials by extracellular Mg ions. Here we present a detailed kinetic analysis of the Mg block in recombinant wild-type and mutant NMDA receptors. We find that the Mg binding site is the same in the wild-type and native hippocampal NMDA receptor channels. In the mutant channels, however, Mg ions bind with a 10-fold lower affinity. On the basis of these results, we propose that the energy well at the Mg binding site in the mutants is shallow and the binding is unstable because of an increase in the rate of dissociation. We postulate that the dipole formed by the amide group of asparagine 614 of the epsilon 1 subunit contributes to the structure of the binding site but predict that additional ligands will be involved in coordinating Mg ions.
Resumo:
The mechanisms of neuronal degeneration following traumatic head injury are not well understood and no adequate treatment is currently available for the prevention of traumatic brain damage in humans. Traumatic head injury leads to primary (at impact) and secondary (distant) damage to the brain. Mechanical percussion of the rat cortex mimics primary damage seen after traumatic head injury in humans; no animal model mimicking the secondary damage following traumatic head injury has yet been established. Rats subjected to percussion trauma of the cortex showed primary damage in the cortex and secondary damage in the hippocampus. Morphometric analysis demonstrated that both cortical and hippocampal damage was mitigated by pretreatment with either the N-methyl-D-aspartate (NMDA) antagonist 3-((+/-)- 2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP) or the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX). Neither treatment prevented primary damage in the cortex when therapy was started after trauma. Surprisingly, delayed treatment of rats with NBQX, but not with CPP, beginning between 1 and 7 hr after trauma prevented hippocampal damage. No protection was seen when therapy with NBQX was started 10 hr after trauma. These data indicate that both NMDA- and non-NMDA-dependent mechanisms contribute to the development of primary damage in the cortex, whereas non-NMDA mechanisms are involved in the evolution of secondary damage in the hippocampus in rats subjected to traumatic head injury. The wide therapeutic time-window documented for NBQX suggests that antagonism at non-NMDA receptors may offer a novel therapeutic approach for preventing deterioration of the brain after head injury.
Resumo:
Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the "adult respiratory distress syndrome," and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.
Resumo:
The amino acid L-glutamate is a neurotransmitter that mediates fast neuronal excitation in a majority of synapses in the central nervous system. Glutamate stimulates both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. While activation of NMDA receptors has been implicated in a variety of neurophysiologic processes, excessive NMDA receptor stimulation (excitotoxicity) is thought to be primarily responsible for neuronal injury in a wide variety of acute neurological disorders including hypoxia-ischemia, seizures, and trauma. Very little is known about endogenous molecules and mechanisms capable of modulating excitotoxic neuronal death. Saturated N-acylethanolamides like palmitoylethanolamide accumulate in ischemic tissues and are synthesized by neurons upon excitatory amino acid receptor activation. Here we report that palmitoylethanolamide, but not the cognate N-acylamide anandamide (the ethanolamide of arachidonic acid), protects cultured mouse cerebellar granule cells against glutamate toxicity in a delayed postagonist paradigm. Palmitoylethanolamide reduced this injury in a concentration-dependent manner and was maximally effective when added 15-min postglutamate. Cannabinoids, which like palmitoylethanolamide are functionally active at the peripheral cannabinoid receptor CB2 on mast cells, also prevented neuron loss in this delayed postglutamate model. Furthermore, the neuroprotective effects of palmitoylethanolamide, as well as that of the active cannabinoids, were efficiently antagonized by the candidate central cannabinoid receptor (CB1) agonist anandamide. Analogous pharmacological behaviors have been observed for palmitoylethanolamide (ALI-Amides) in downmodulating mast cell activation. Cerebellar granule cells expressed mRNA for CB1 and CB2 by in situ hybridization, while two cannabinoid binding sites were detected in cerebellar membranes. The results suggest that (i) non-CB1 cannabinoid receptors control, upon agonist binding, the downstream consequences of an excitotoxic stimulus; (ii) palmitoylethanolamide, unlike anandamide, behaves as an endogenous agonist for CB2-like receptors on granule cells; and (iii) activation of such receptors may serve to downmodulate deleterious cellular processes following pathological events or noxious stimuli in both the nervous and immune systems.
Resumo:
Ca2+ influx controls multiple neuronal functions including neurotransmitter release, protein phosphorylation, gene expression, and synaptic plasticity. Brain L-type Ca2+ channels, which contain either alpha 1C or alpha 1D as their pore-forming subunits, are an important source of calcium entry into neurons. Alpha 1C exists in long and short forms, which are differentially phosphorylated, and C-terminal truncation of alpha 1C increases its activity approximately 4-fold in heterologous expression systems. Although most L-type calcium channels in brain are localized in the cell body and proximal dendrites, alpha 1C subunits in the hippocampus are also present in clusters along the dendrites of neurons. Examination by electron microscopy shows that these clusters of alpha 1C are localized in the postsynaptic membrane of excitatory synapses, which are known to contain glutamate receptors. Activation of N-methyl-D-aspartate (NMDA)-specific glutamate receptors induced the conversion of the long form of alpha 1C into the short form by proteolytic removal of the C terminus. Other classes of Ca2+ channel alpha1 subunits were unaffected. This proteolytic processing reaction required extracellular calcium and was blocked by inhibitors of the calcium-activated protease calpain, indicating that calcium entry through NMDA receptors activated proteolysis of alpha1C by calpain. Purified calpain catalyzed conversion of the long form of immunopurified alpha 1C to the short form in vitro, consistent with the hypothesis that calpain is responsible for processing of alpha 1C in hippocampal neurons. Our results suggest that NMDA receptor-induced processing of the postsynaptic class C L-type Ca2+ channel may persistently increase Ca2+ influx following intense synaptic activity and may influence Ca2+-dependent processes such as protein phosphorylation, synaptic plasticity, and gene expression.
Resumo:
Age-associated memory impairment occurs frequently in primates. Based on the established importance of both the perforant path and N-methyl-D-aspartate (NMDA) receptors in memory formation, we investigated the glutamate receptor distribution and immunofluorescence intensity within the dentate gyrus of juvenile, adult, and aged macaque monkeys with the combined use of subunit-specific antibodies and quantitative confocal laser scanning microscopy. Here we demonstrate that aged monkeys, compared to adult monkeys, exhibit a 30.6% decrease in the ratio of NMDA receptor subunit 1 (NMDAR1) immunofluorescence intensity within the distal dendrites of the dentate gyrus granule cells, which receive the perforant path input from the entorhinal cortex, relative to the proximal dendrites, which receive an intrinsic excitatory input from the dentate hilus. The intradendritic alteration in NMDAR1 immunofluorescence occurs without a similar alteration of non-NMDA receptor subunits. Further analyses using synaptophysin as a reflection of total synaptic density and microtubule-associated protein 2 as a dendritic structural marker demonstrated no significant difference in staining intensity or area across the molecular layer in aged animals compared to the younger animals. These findings suggest that, in aged monkeys, a circuit-specific alteration in the intradendritic concentration of NMDAR1 occurs without concomitant gross structural changes in dendritic morphology or a significant change in the total synaptic density across the molecular layer. This alteration in the NMDA receptor-mediated input to the hippocampus from the entorhinal cortex may represent a molecular/cellular substrate for age-associated memory impairments.