53 resultados para National Emergency Access Target (NEAT)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accumulative evidence suggests that more than 20 neuron-specific genes are regulated by a transcriptional cis-regulatory element known as the neural restrictive silencer (NRS). A trans-acting repressor that binds the NRS, NRSF [also designated RE1-silencing transcription factor (REST)] has been cloned, but the mechanism by which it represses transcription is unknown. Here we show evidence that NRSF represses transcription of its target genes by recruiting mSin3 and histone deacetylase. Transfection experiments using a series of NRSF deletion constructs revealed the presence of two repression domains, RD-1 and RD-2, within the N- and C-terminal regions, respectively. A yeast two-hybrid screen using the RD-1 region as a bait identified a short form of mSin3B. In vitro pull-down assays and in vivo immunoprecipitation-Western analyses revealed a specific interaction between NRSF-RD1 and mSin3 PAH1-PAH2 domains. Furthermore, NRSF and mSin3 formed a complex with histone deacetylase 1, suggesting that NRSF-mediated repression involves histone deacetylation. When the deacetylation of histones was inhibited by tricostatin A in non-neuronal cells, mRNAs encoding several neuronal-specific genes such as SCG10, NMDAR1, and choline acetyltransferase became detectable. These results indicate that NRSF recruits mSin3 and histone deacetylase 1 to silence neural-specific genes and suggest further that repression of histone deacetylation is crucial for transcriptional activation of neural-specific genes during neuronal terminal differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an inherited muscle-wasting disease caused by the absence of a muscle cytoskeletal protein, dystrophin. We have previously shown that utrophin, the autosomal homologue of dystrophin, is able to compensate for the absence of dystrophin in a mouse model of DMD; we have therefore undertaken a detailed study of the transcriptional regulation of utrophin to identify means of effecting its up-regulation in DMD muscle. We have previously isolated a promoter element lying within the CpG island at the 5′ end of the gene and have shown it to be synaptically regulated in vivo. In this paper, we show that there is an alternative promoter lying within the large second intron of the utrophin gene, 50 kb 3′ to exon 2. The promoter is highly regulated and drives transcription of a widely expressed unique first exon that splices into a common full-length mRNA at exon 3. The two utrophin promoters are independently regulated, and we predict that they respond to discrete sets of cellular signals. These findings significantly contribute to understanding the molecular physiology of utrophin expression and are important because the promoter reported here provides an alternative target for transcriptional activation of utrophin in DMD muscle. This promoter does not contain synaptic regulatory elements and might, therefore, be a more suitable target for pharmacological manipulation than the previously described promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic changes in insects that lead to insecticide resistance include point mutations and up-regulation/amplification of detoxification genes. Here, we report a third mechanism, resistance caused by an absence of gene product. Mutations of the Methoprene-tolerant (Met) gene of Drosophila melanogaster result in resistance to both methoprene, a juvenile hormone (JH) agonist insecticide, and JH. Previous results have demonstrated a mechanism of resistance involving an intracellular JH binding protein that has reduced ligand affinity in Met flies. We show that a γ-ray induced allele, Met27, completely lacks Met transcript during the insecticide-sensitive period in development. Although Met27 homozygotes have reduced oogenesis, they are viable, demonstrating that Met is not a vital gene. Most target-site resistance genes encode vital proteins and thus have few mutational changes that permit both resistance and viability. In contrast, resistance genes such as Met that encode nonvital insecticide target proteins can have a variety of mutational changes that result in an absence of functional gene product and thus should show higher rates of resistance evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using mRNA polymerase chain reaction differential display technique (DDPCR), we have identified one early responsive cDNA fragment, TDD5, from a 5α-reductase-deficient T cell hybridoma. The DDPCR profiles of TDD5 suggest that its expression can be repressed by testosterone (T) within 2 hr. More importantly, both DDPCR and Northern blot analysis further demonstrated that the expression of TDD5 was differentially repressed by T and dihydrotestosterone (DHT) at the mRNA level. To our knowledge, this is the first androgen target gene to show a preference in response to T over DHT in cell culture. TDD5 is expressed in several tissues with particular abundance in kidney. Full-length TDD5 cDNA (2,916 bp) encodes a protein with a calculated molecular weight of 42,000. Finally, our animal studies further confirm that TDD5 mRNA levels can be repressed to the basal level 8 hr after DHT administration. The isolation and characterization of the early-responsive androgen target gene TDD5 and the fact that TDD5 mRNA level can be differentially regulated by T and DHT may provide a useful tool to study the molecular mechanism of androgen preference on target gene regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein acylation is an important way in which a number of proteins with a variety of functions are modified. The physiological role of the acylation of cellular proteins is still poorly understood. Covalent binding of fatty acids to nonintegral membrane proteins is thought to produce transient or permanent enhancement of the association of the polypeptide chains with biological membranes. In this paper, we investigate the functional role for the palmitoylation of an atypical membrane-bound protein, yeast protoporphyrinogen oxidase, which is the molecular target of diphenyl ether-type herbicides. Palmitoylation stabilizes an active heat- and protease-resistant conformation of the protein. Palmitoylation of protoporphyrinogen oxidase has been demonstrated to occur in vivo both in yeast cells and in a heterologous bacterial expression system, where it may be inhibited by cerulenin leading to the accumulation of degradation products of the protein. The thiol ester linking palmitoleic acid to the polypeptide chain was shown to be sensitive to hydrolysis by hydroxylamine and also by the widely used serine-protease inhibitor phenylmethylsulfonyl fluoride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For proteins to enter the secretory pathway, the membrane attachment site (M-site) on ribosomes must bind cotranslationally to the Sec61 complex present in the endoplasmic reticulum membrane. The signal recognition particle (SRP) and its receptor (SR) are required for targeting, and the nascent polypeptide associated complex (NAC) prevents inappropriate targeting of nonsecretory nascent chains. In the absence of NAC, any ribosome, regardless of the polypeptide being synthesized, binds to the endoplasmic reticulum membrane, and even nonsecretory proteins are translocated across the endoplasmic reticulum membrane. By occupying the M-site, NAC prevents all ribosome binding unless a signal peptide and SRP are present. The mechanism by which SRP overcomes the NAC block is unknown. We show that signal peptide-bound SRP occupies the M-site and therefore keeps it free of NAC. To expose the M-site and permit ribosome binding, SR can pull SRP away from the M-site without prior release of SRP from the signal peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty as to which member of a family of DNA-binding transcription factors regulates a specific promoter in intact cells is a problem common to many investigators. Determining target gene specificity requires both an analysis of protein binding to the endogenous promoter as well as a characterization of the functional consequences of transcription factor binding. By using a formaldehyde crosslinking procedure and Gal4 fusion proteins, we have analyzed the timing and functional consequences of binding of Myc and upstream stimulatory factor (USF)1 to endogenous cellular genes. We demonstrate that the endogenous cad promoter can be immunoprecipitated with antibodies against Myc and USF1. We further demonstrate that although both Myc and USF1 can bind to cad, the cad promoter can respond only to the Myc transactivation domain. We also show that the amount of Myc bound to the cad promoter fluctuates in a growth-dependent manner. Thus, our data analyzing both DNA binding and promoter activity in intact cells suggest that cad is a Myc target gene. In addition, we show that Myc binding can occur at many sites in vivo but that the position of the binding site determines the functional consequences of this binding. Our data indicate that a post-DNA-binding mechanism determines Myc target gene specificity. Importantly, we have demonstrated the feasibility of analyzing the binding of site-specific transcription factors in vivo to single copy mammalian genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of DNA replication and physical DNA damage induce checkpoint responses that arrest cell cycle progression at two different stages. In Saccharomyces cerevisiae, the execution of both checkpoint responses requires the Mec1 and Rad53 proteins. This observation led to the suggestion that these checkpoint responses are mediated through a common signal transduction pathway. However, because the checkpoint-induced arrests occur at different cell cycle stages, the downstream effectors mediating these arrests are likely to be distinct. We have previously shown that the S. cerevisiae protein Pds1p is an anaphase inhibitor and is essential for cell cycle arrest in mitosis in the presence DNA damage. Herein we show that DNA damage, but not inhibition of DNA replication, induces the phosphorylation of Pds1p. Analyses of Pds1p phosphorylation in different checkpoint mutants reveal that in the presence of DNA damage, Pds1p is phosphorylated in a Mec1p- and Rad9p-dependent but Rad53p-independent manner. Our data place Pds1p and Rad53p on parallel branches of the DNA damage checkpoint pathway. We suggest that Pds1p is a downstream target of the DNA damage checkpoint pathway and that it is involved in implementing the DNA damage checkpoint arrest specifically in mitosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of subtle or conditional mutations in mice through the combined use of site-specific and homologous recombination has become an increasingly widespread experimental paradigm in mammalian genetics. Embryonic stem cells containing recombinase transgenes that were expressed in the male germ line, but not in other tissues or in the embryonic stem cells themselves, would substantially simplify the production of such alleles. Here we show that transgenes comprised of the mouse protamine 1 promoter and the Cre recombinase coding sequence mediate the efficient recombination of a Cre target transgene in the male germ line, but not in other tissues. Embryonic stem cell lines generated from one of these transgenic strains were transfected with targeting vectors that included loxP-flanked selectable markers, and homologously recombined alleles containing the marker and functional loxP sites were isolated. These results establish the potential of the system for substantially reducing the time, effort, and resources required to produce homologously recombined alleles in mice that have been secondarily rearranged by a site-specific recombinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the activities of IFN-γ are the result of STAT1-mediated transcriptional responses. In this study, we show that the BRCA1 tumor suppressor acts in concert with STAT1 to differentially activate transcription of a subset of IFN-γ target genes and mediates growth inhibition by this cytokine. After IFN-γ treatment, induction of the cyclin-dependent kinase inhibitor, p21WAF1, was synergistically activated by BRCA1, whereas the IRF-1 gene was unaffected. Importantly, the differential induction of p21WAF1 was impaired in breast cancer cells homozygous for the mutant BRCA1 5382C allele. Biochemical analysis illustrated that the mechanism of this transcriptional synergy involves interaction between BRCA1 aa 502–802 and the C-terminal transcriptional activation domain of STAT1 including Ser-727 whose phosphorylation is crucial for transcriptional activation. Significantly, STAT1 proteins mutated at Ser-727 bind poorly to BRCA1, reinforcing the importance of Ser-727 in the recruitment of transcriptional coactivators by STAT proteins. These findings reveal a novel mechanism for BRCA1 function in the IFN-γ-dependent tumor surveillance system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-β, a type β transforming growth factor (TGF-β) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose- as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF-β promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF-β was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF-β-overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF-β receptors or Smad4, suggesting that PTGF-β acts through the TGF-β signaling pathway. Thus, PTGF-β, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF-β signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-β.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rearrangement of chromosomal bands 1q21–23 is one of the most frequent chromosomal aberrations observed in hematological malignancy. The genes affected by these rearrangements remain poorly characterized. Typically, 1q21–23 rearrangements arise during tumor evolution and accompany disease-specific chromosomal rearrangements such as t(14;18) (BCL2) and t(8;14) (MYC), where they are thus thought to play an important role in tumor progression. The pathogenetic basis of this 1q21–23-associated disease progression is currently unknown. In this setting, we surveyed our series of follicular lymphoma for evidence of recurring 1q21–23 breaks and identified three cases in which a t(14;18)(q32;q21) was accompanied by a novel balanced t(1;22)(q22;q11). Molecular cloning of the t(1;22) in a cell line (B593) derived from one of these cases and detailed fluorescent in situ hybridization mapping in the two remaining cases identified the FCGR2B gene, which encodes the immunoreceptor tyrosine-based inhibition motif-bearing IgG Fc receptor, FcγRIIB, as the target gene of the t(1;22)(q22;q11). We demonstrate deregulation of FCGR2B leading to hyperexpression of FcγRIIb2 as the principal consequence of the t(1;22). This is evidence that IgG Fc receptors can be targets for deregulation through chromosomal translocation in lymphoma. It suggests that dysregulation of FCGR2B may play a role in tumor progression in follicular lymphoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abnormal expression of major histocompatibility complex (MHC) class I and class II in various tissues is associated with autoimmune disease. Autoimmune responses can be triggered by viral infections or tissue injuries. We show that the ability of a virus or a tissue injury to increase MHC gene expression is duplicated by any fragment of double-stranded (ds) DNA or dsRNA introduced into the cytoplasm of nonimmune cells. Activation is sequence-independent, is induced by ds polynucleotides as small as 25 bp in length, and is not duplicated by single-stranded polynucleotides. In addition to causing abnormal MHC expression, the ds nucleic acids increase the expression of genes necessary for antigen processing and presentation: proteasome proteins (e.g., LMP2), transporters of antigen peptides; invariant chain, HLA-DM, and the costimulatory molecule B7.1. The mechanism is different from and additive to that of γ-interferon (γIFN), i.e., ds polynucleotides increase class I much more than class II, whereas γIFN increases class II more than class I. The ds nucleic acids also induce or activate Stat1, Stat3, mitogen-activated protein kinase, NF-κB, the class II transactivator, RFX5, and the IFN regulatory factor 1 differently from γIFN. CpG residues are not responsible for this effect, and the action of the ds polynucleotides could be shown in a variety of cell types in addition to thyrocytes. We suggest that this phenomenon is a plausible mechanism that might explain how viral infection of tissues or tissue injury triggers autoimmune disease; it is potentially relevant to host immune responses induced during gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we established that natural killer (NK) cells from C57BL/6 (B6), but not BALB/c, mice lysed Chinese hamster ovary (CHO) cells, and we mapped the locus that determines this differential CHO-killing capacity to the NK gene complex on chromosome 6. The localization of Chok in the NK gene complex suggested that it may encode either an activating or an inhibitory receptor. Here, results from a lectin-facilitated lysis assay predicted that Chok is an activating B6 NK receptor. Therefore, we immunized BALB/c mice with NK cells from BALB.B6–Cmv1r congenic mice and generated a mAb, designated 4E4, that blocked B6-mediated CHO lysis. mAb 4E4 also redirected lysis of Daudi targets, indicating its reactivity with an activating NK cell receptor. Furthermore, only the 4E4+ B6 NK cell subset mediated CHO killing, and this lysis was abrogated by preincubation with mAb 4E4. Flow cytometric analysis indicated that mAb 4E4 specifically reacts with Ly-49D but not Ly-49A, B, C, E, G, H, or I transfectants. Finally, gene transfer of Ly-49DB6 into BALB/c NK cells conferred cytotoxic capacity against CHO cells, thus establishing that the Ly-49D receptor is sufficient to activate NK cells to lyse this target. Hence, Ly-49D is the Chok gene product and is a mouse NK cell receptor capable of directly triggering natural killing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid imaging by antitumor antibodies has been limited by the prolonged targeting kinetics and clearance of labeled whole antibodies. Genetically engineered fragments with rapid access and high retention in tumor tissue combined with rapid blood clearance are suitable for labeling with short-lived radionuclides, including positron-emitting isotopes for positron-emission tomography (PET). An engineered fragment was developed from the high-affinity anticarcinoembryonic antigen (CEA) monoclonal antibody T84.66. This single-chain variable fragment (Fv)-CH3, or minibody, was produced as a bivalent 80 kDa dimer. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N′,N′′, N′′′-tetraacetic acid (DOTA) was conjugated to the anti-CEA minibody for labeling with copper-64, a positron-emitting radionuclide (t1/2 = 12.7 h). In vivo distribution was evaluated in athymic mice bearing paired LS174T human colon carcinoma (CEA positive) and C6 rat glioma (CEA negative) xenografts. Five hours after injection with 64Cu-DOTA-minibody, microPET imaging showed high uptake in CEA-positive tumor (17.9% injected dose per gram ± 3.79) compared with control tumor (6.0% injected dose per gram ± 1.0). In addition, significant uptake was seen in liver, with low uptake in other tissues. Average target/background ratios relative to neighboring tissue were 3–4:1. Engineered antibody fragments labeled with positron-emitting isotopes such as copper-64 provide a new class of agents for PET imaging of tumors.