47 resultados para NF-YA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor NF-κB activates a number of genes whose protein products are proinflammatory. In quiescent cells, NF-κB exists in a latent form and is activated via a signal-dependent proteolytic mechanism in which the inhibitory protein IκB is degraded by the ubiquitin–proteasome pathway. Consequently, inhibition of the proteasome suppresses activation of NF-κB. This suppression should therefore decrease transcription of many genes encoding proinflammatory proteins and should ultimately have an anti-inflammatory effect. To this end, a series of peptide boronic acid inhibitors of the proteasome, exemplified herein by PS-341, were developed. The proteasome is the large multimeric protease that catalyzes the final proteolytic step of the ubiquitin–proteasome pathway. PS-341, a potent, competitive inhibitor of the proteasome, readily entered cells and inhibited the activation of NF-κB and the subsequent transcription of genes that are regulated by NF-κB. Significantly, PS-341 displayed similar effects in vivo. Oral administration of PS-341 had anti-inflammatory effects in a model of Streptococcal cell wall-induced polyarthritis and liver inflammation in rats. The attenuation of inflammation in this model was associated with an inhibition of IκBα degradation and NF-κB-dependent gene expression. These experiments clearly demonstrate that the ubiquitin–proteasome pathway and NF-κB play important roles in regulating chronic inflammation and that, as predicted, proteasome inhibition has an anti-inflammatory effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Jun N-terminal kinases (JNKs) recently have been shown to be required for thymocyte apoptosis and T cell differentiation and/or proliferation. To investigate the molecular targets of JNK signaling in lymphoid cells, we used mice in which the serines phosphorylated by JNK in c-Jun were replaced by homologous recombination with alanines (junAA mice). Lymphocytes from these mice showed no phosphorylation of c-Jun in response to activation stimuli, whereas c-Jun was rapidly phosphorylated in wild-type cells. Despite the fact that c-jun is essential for early development, junAA mice develop normally; however, c-Jun N-terminal phosphorylation was required for efficient T cell receptor-induced and tumor necrosis factor-α-induced thymocyte apoptosis. In contrast, c-Jun phosphorylation by JNK is not required for T cell proliferation or differentiation. Because jnk2−/− T cells display a proliferation defect, we concluded that JNK2 must have other substrates required for lymphocyte function. Surprisingly, jnk2−/− T cells showed reduced NF-AT DNA-binding activity after activation. Furthermore, overexpression of JNK2 in Jurkat T cells strongly enhanced NF-AT-dependent transcription. These results demonstrate that JNK signaling differentially uses c-Jun and NF-AT as molecular effectors during thymocyte apoptosis and T cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor nuclear factor κB (NFκB) is a key factor in the immune response triggered by a wide variety of molecules such as inflammatory cytokines, or some bacterial and viral products. This transcription factor represents a new target for the development of anti-inflammatory molecules, but this type of research is currently hampered by the lack of a convenient and rapid screening assay for NFκB activation. Indeed, NFκB DNA-binding capacity is traditionally estimated by radioactive gel shift assay. Here we propose a new DNA-binding assay based on the use of multi-well plates coated with a cold oligonucleotide containing the consensus binding site for NFκB. The presence of the DNA-bound transcription factor is then detected by anti-NFκB antibodies and revealed by colorimetry. This assay is easy to use, non-radioactive, highly reproducible, specific for NFκB, more sensitive than regular radioactive gel shift and very convenient for high throughput screening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-κB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685–839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-κB to the nucleus. N-CAM also activated NF-κB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-κB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-κB and may be important in other N-CAM-mediated signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutant I1A cells, lacking IL-1 receptor-associated kinase (IRAK) mRNA and protein, have been used to study the involvement of IRAK in NFκB and c-Jun N-terminal kinase (JNK) activation. A series of IRAK deletion constructs were expressed in I1A cells, which were then tested for their ability to respond to IL-1. Both the N-terminal death domain and the C-terminal region of IRAK are required for IL-1-induced NFκB and JNK activation, whereas the N-proximal undetermined domain is required for the activation of NFκB but not JNK. The phosphorylation and ubiquitination of IRAK deletion mutants correlate tightly with their ability to activate NFκB in response to IL-1, but IRAK can mediate IL-1-induced JNK activation without being phosphorylated. These studies reveal that the IL-1-induced signaling pathways leading to NFκB and JNK activation diverge either at IRAK or at a point nearer to the receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor NF-κB regulates expression of genes that are involved in inflammation, immune response, viral infection, cell survival, and division. However, the role of NF-κB in hypertrophic growth of terminally differentiated cardiomyocytes is unknown. Here we report that NF-κB activation is required for hypertrophic growth of cardiomyocytes. In cultured rat primary neonatal ventricular cardiomyocytes, the nuclear translocation of NF-κB and its transcriptional activity were stimulated by several hypertrophic agonists, including phenylephrine, endothelin-1, and angiotensin II. The activation of NF-κB was inhibited by expression of a “supersuppressor” IκBα mutant that is resistant to stimulation-induced degradation and a dominant negative IκB kinase (IKKβ) mutant that can no longer be activated by phosphorylation. Furthermore, treatment with phenylephrine induced IκBα degradation in an IKK-dependent manner, suggesting that NF-κB is a downstream target of the hypertrophic agonists. Importantly, expression of the supersuppressor IκBα mutant or the dominant negative IKKβ mutant blocked the hypertrophic agonist-induced expression of the embryonic gene atrial natriuretic factor and enlargement of cardiomyocytes. Conversely, overexpression of NF-κB itself induced atrial natriuretic factor expression and cardiomyocyte enlargement. These findings suggest that NF-κB plays a critical role in the hypertrophic growth of cardiomyocytes and may serve as a potential target for the intervention of heart disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear factor-κB (NF-κB) family of transcription factors has been shown to regulate proliferation in several cell types. Although recent studies have demonstrated aberrant expression or activity of NF-κB in human breast cancer cell lines and tumors, little is known regarding the precise role of NF-κB in normal proliferation and development of the mammary epithelium. We investigated the function of NF-κB during murine early postnatal mammary gland development by observing the consequences of increased NF-κB activity in mouse mammary epithelium lacking the gene encoding IκBα, a major inhibitor of NF-κB. Mammary tissue containing epithelium from inhibitor κBα (IκBα)-deficient female donors was transplanted into the gland-free mammary stroma of wild-type mice, resulting in an increase in lateral ductal branching and pervasive intraductal hyperplasia. A two- to threefold increase in epithelial cell number was observed in IκBα-deficient epithelium compared with controls. Epithelial cell proliferation was strikingly increased in IκBα-deficient epithelium, and no alteration in apoptosis was detected. The extracellular matrix adjacent to IκBα-deficient epithelium was reduced. Consistent with in vivo data, a fourfold increase in epithelial branching was also observed in purified IκBα-deficient primary epithelial cells in three-dimensional culture. These data demonstrate that NF-κB positively regulates mammary epithelial proliferation, branching, and functions in maintenance of normal epithelial architecture during early postnatal development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human inducible nitric oxide synthase (hiNOS) gene is expressed in several disease states and is also important in the normal immune response. Previously, we described a cytokine-responsive enhancer between −5.2 and −6.1 kb in the 5′-flanking hiNOS promoter DNA, which contains multiple nuclear factor κβ (NF-κB) elements. Here, we describe the role of the IFN-Jak kinase-Stat (signal transducer and activator of transcription) 1 pathway for regulation of hiNOS gene transcription. In A549 human lung epithelial cells, a combination of cytokines tumor necrosis factor-α, interleukin-1β, and IFN-γ (TNF-α, IL-1β, and IFN-γ) function synergistically for induction of hiNOS transcription. Pharmacological inhibitors of Jak2 kinase inhibit cytokine-induced Stat 1 DNA-binding and hiNOS gene expression. Expression of a dominant-negative mutant Stat 1 inhibits cytokine-induced hiNOS reporter expression. Site-directed mutagenesis of a cis-acting DNA element at −5.8 kb in the hiNOS promoter identifies a bifunctional NF-κB/Stat 1 motif. In contrast, gel shift assays indicate that only Stat 1 binds to the DNA element at −5.2 kb in the hiNOS promoter. Interestingly, Stat 1 is repressive to basal and stimulated iNOS mRNA expression in 2fTGH human fibroblasts, which are refractory to iNOS induction. Overexpression of NF-κB activates hiNOS promoter–reporter expression in Stat 1 mutant fibroblasts, but not in the wild type, suggesting that Stat 1 inhibits NF-κB function in these cells. These results indicate that both Stat 1 and NF-κB are important in the regulation of hiNOS transcription by cytokines in a complex and cell type-specific manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nontypeable Hemophilus influenzae (NTHi) is an important human pathogen in both children and adults. In children, it causes otitis media, the most common childhood infection and the leading cause of conductive hearing loss in the United States. In adults, it causes lower respiratory tract infections in the setting of chronic obstructive pulmonary disease, the fourth leading cause of death in the United States. The molecular mechanisms underlying the pathogenesis of NTHi-induced infections remain undefined, but they may involve activation of NF-κB, a transcriptional activator of multiple host defense genes involved in immune and inflammatory responses. Here, we show that NTHi strongly activates NF-κB in human epithelial cells via two distinct signaling pathways, NF-κB translocation-dependent and -independent pathways. The NF-κB translocation-dependent pathway involves activation of NF-κB inducing kinase (NIK)–IKKα/β complex leading to IκBα phosphorylation and degradation, whereas the NF-κB translocation-independent pathway involves activation of MKK3/6–p38 mitogen-activated protein (MAP) kinase pathway. Bifurcation of NTHi-induced NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase pathways may occur at transforming growth factor-β activated kinase 1 (TAK1). Furthermore, we show that toll-like receptor 2 (TLR2) is required for NTHi-induced NF-κB activation. In addition, several key inflammatory mediators including IL-1β, IL-8, and tumor necrosis factor-α are up-regulated by NTHi. Finally, P6, a 16-kDa lipoprotein highly conserved in the outer membrane of all NTHi and H. influenzae type b strains, appears to also activate NF-κB via similar signaling pathways. Taken together, our results demonstrate that NTHi activates NF-κB via TLR2–TAK1-dependent NIK–IKKα/β-IκBα and MKK3/6–p38 MAP kinase signaling pathways. These studies may bring new insights into molecular pathogenesis of NTHi-induced infections and open up new therapeutic targets for these diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the binding of Rel p50 and p52 homodimers at sites within the transcriptional initiation region of HIV-1 provides for their ability to interact with other proteins that bind the initiator. The binding of one such protein, the initiator protein TFII-I, to the initiation region of HIV-1 is augmented in the presence of Rel p50 and Rel p52 homodimers. Consistent with this, in vitro Rel homodimers potentiate HIV-1 transcription in a manner dependent upon TFII-I. The findings suggest that Rel dimers may regulate HIV-1 transcription in two ways. First, through binding at the kappa B enhancer sites at (-104 to -80), NF-kappa B p50:p65 participates in classical transcriptional activation. Second, Rel dimers such as p50 or p52 might bind at initiator sequences to regulate the de novo binding of components of certain preinitiation complexes. These findings, and the existence of Rel binding sites at the initiators of other genes, suggest roles for Rel proteins in early events determining transcriptional control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent infection membrane protein 1 (LMP1), the Epstein-Barr virus transforming protein, associates with tumor necrosis factor receptor (TNFR) associated factor 1 (TRAF1) and TRAF3. Since TRAF2 has been implicated in TNFR-mediated NF-kappa B activation, we have evaluated the role of TRAF2 in LMP1-mediated NF-kappa B activation. TRAF2 binds in vitro to the LMP1 carboxyl-terminal cytoplasmic domain (CT), coprecipitates with LMP1 in B lymphoblasts, and relocalizes to LMP1 plasma membrane patches. A dominant negative TRAF2 deletion mutant that lacks amino acids 6-86 (TRAF/ delta 6-86) inhibits NF-kappa B activation from the LMP1 CT and competes with TRAF2 for LMP1 binding. TRAF2 delta 6-86 inhibits NF-kappa B activation mediated by the first 45 amino acids of the LMP1 CT by more than 75% but inhibits NF-kappa B activation through the last 55 amino acids of the CT by less than 40%. A TRAF interacting protein, TANK, inhibits NF-kappa B activation by more than 70% from both LMP1 CT domains. These data implicate TRAF2 aggregation in NF-kappa B activation by the first 45 amino acids of the LMP1 CT and suggest that a different TRAF-related pathway may be involved in NF-kappa B activation by the last 55 amino acids of the LMP1 CT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD30 is a member of the tumor necrosis factor (TNF) receptor superfamily. CD30 is expressed on normal activated lymphocytes, on several virally transformed T- or B-cell lines and on neoplastic cells of Hodgkin's lymphoma. The interaction of CD30 with its ligand induces pleiotropic effects on cells resulting in proliferation, differentiation, or death. The CD30 cytoplasmic tail interacts with TNF receptor-associated factors (TRAFs), which have been shown to transduce signals mediated by TNF-R2 and CD40. We demonstrate here that TRAF2 also plays an important role in CD30-induced NF-kappa B activation. We also show that TRAF2-mediated activation of NF-kappa B plays a role in the activation of HIV transcription induced by CD30 cross-linking. Detailed site-directed mutagenesis of the CD30 cytoplasmic tail reveals that there are two independent binding sites for TRAF, each interacting with a different domain of TRAF. Furthermore, we localized the TRAF-C binding site in CD30 to a 5-7 amino acid stretch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, is known to have antimitogenic, anticarcinogenic, antiinflammatory, and immunomodulatory properties. The molecular basis for these diverse properties is not known. Since the role of the nuclear factor NF-kappa B in these responses has been documented, we examined the effect of CAPE on this transcription factor. Our results show that the activation of NF-kappa B by tumor necrosis factor (TNF) is completely blocked by CAPE in a dose- and time-dependent manner. Besides TNF, CAPE also inhibited NF-kappa B activation induced by other inflammatory agents including phorbol ester, ceramide, hydrogen peroxide, and okadaic acid. Since the reducing agents reversed the inhibitory effect of CAPE, it suggests the role of critical sulfhydryl groups in NF-kappa B activation. CAPE prevented the translocation of the p65 subunit of NF-kappa B to the nucleus and had no significant effect on TNF-induced I kappa B alpha degradation, but did delay I kappa B alpha resynthesis. The effect of CAPE on inhibition of NF-kappa B binding to the DNA was specific, in as much as binding of other transcription factors including AP-1, Oct-1, and TFIID to their DNA were not affected. When various synthetic structural analogues of CAPE were examined, it was found that a bicyclic, rotationally constrained, 5,6-dihydroxy form was superactive, whereas 6,7-dihydroxy variant was least active. Thus, overall our results demonstrate that CAPE is a potent and a specific inhibitor of NF-kappa B activation and this may provide the molecular basis for its multiple immunomodulatory and antiinflammatory activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRAF1 and TRAF2 form an oligomeric complex that associates with the cytoplasmic domains of various members of the tumor necrosis factor (TNF) receptor superfamily. TRAF2 action is required for activation of the transcription factor NF-kappaB triggered by TNF and the CD40 ligand. Here we show that TRAF1 and TRAF2 interact with A20, a zinc finger protein, whose expression is induced by agents that activate NF-kappaB. Mutational analysis revealed that the N-terminal half of A20 interacts with the conserved C-terminal TRAF domain of TRAF1 and TRAF2. In cotransfection experiments, A20 blocked TRAF2-mediated NF-kappaB activation. A20 also inhibited TNF and IL-1-induced NF-kappaB activation, suggesting that it may inhibit NF-kappaB activation signaled by diverse stimuli. The ability of A20 to block NF-kappaB activation was mapped to its C-terminal zinc finger domain. Thus, A20 is composed of two functionally distinct domains, an N-terminal TRAF binding domain that recruits A20 to the TRAF2-TRAF1 complex and a C-terminal domain that mediates inhibition of NF-kappaB activation. Our findings suggest a possible molecular mechanism that could explain A20's ability to negatively regulate its own TNF-inducible expression.