31 resultados para Multivariate Calibration. Levofloxacin. Drugs and fluorescence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate possible associations between use of cardiovascular drugs and suicide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic administration of the atypical antipsychotic drug, clozapine, to rodents has been shown to increase the concentration of apolipoprotein D (apoD) in several area of the brain, suggesting that apoD could be involved in the therapeutic effects of antipsychotic drugs and/or the pathology of psychotic illnesses. Here, we measured a significant decrease in the concentration of apoD in serum samples from schizophrenic patients. In contrast, apoD levels were significantly increased (92–287%) in dorsolateral prefrontal cortex (Brodmann's area 9) of schizophrenic and bipolar subjects. Elevated levels of apoD expression were also observed in the caudate of schizophrenic and bipolar subjects (68–89%). No differences in apoD immunoreactivity were detected in occipital cortex (Brodmann's area 18) in either group, or in the hippocampus, substantia nigra, or cerebellum of the schizophrenic group. The low serum concentrations of apoD observed in these patients supports recent hypotheses involving systemic insufficiencies in lipid metabolism/signaling in schizophrenia. Elevation of apoD expression selectively within central nervous system regions implicated in the pathology of these neuropsychiatric disorders suggests a focal compensatory response that neuroleptic drug regimens may augment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salt accumulation in spinach (Spinacia oleracea L.) leaves first inhibits photosynthesis by decreasing stomatal and mesophyll conductances to CO2 diffusion and then impairs ribulose-1,5-bisphosphate carboxylase/oxygenase (S. Delfine, A. Alvino, M. Zacchini, F. Loreto [1998] Aust J Plant Physiol 25: 395–402). We measured gas exchange and fluorescence in spinach recovering from salt accumulation. When a 21-d salt accumulation was reversed by 2 weeks of salt-free irrigation (rewatering), stomatal and mesophyll conductances and photosynthesis partially recovered. For the first time, to our knowledge, it is shown that a reduction of mesophyll conductance can be reversed and that this may influence photosynthesis. Photosynthesis and conductances did not recover when salt drainage was restricted and Na content in the leaves was greater than 3% of the dry matter. Incomplete recovery of photosynthesis in rewatered and control leaves may be attributed to an age-related reduction of conductances. Biochemical properties were not affected by the 21-d salt accumulation. However, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and content were reduced by a 36- to 50-d salt accumulation. Photochemical efficiency was reduced only in 50-d salt-stressed leaves because of a decrease in the fraction of open photosystem II centers. A reduction in chlorophyll content and an increase in the chlorophyll a/b ratio were observed in 43- and 50-d salt-stressed leaves. Low chlorophyll affects light absorptance but is unlikely to change light partitioning between photosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial rate of Ca2+ movement across the inner-envelope membrane of pea (Pisum sativum L.) chloroplasts was directly measured by stopped-flow spectrofluorometry using membrane vesicles loaded with the Ca2+-sensitive fluorophore fura-2. Calibration of fura-2 fluorescence was achieved by combining a ratiometric method with Ca2+-selective minielectrodes to determine pCa values. The initial rate of Ca2+ influx in predominantly right-side-out inner-envelope membrane vesicles was greater than that in largely inside-out vesicles. Ca2+ movement was stimulated by an inwardly directed electrochemical proton gradient across the membrane vesicles, an effect that was diminished by the addition of valinomycin in the presence of K+. In addition, Ca2+ was shown to move across the membrane vesicles in the presence of a K+ diffusion potential gradient. The potential-stimulated rate of Ca2+ transport was slightly inhibited by diltiazem and greatly inhibited by ruthenium red. Other pharmacological agents such as LaCl3, verapamil, and nifedipine had little or no effect. These results indicate that Ca2+ transport across the chloroplast inner envelope can occur by a potential-stimulated uniport mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinational repair of replication forks can occur either to a crossover (XO) or noncrossover (non-XO) depending on Holliday junction resolution. Once the fork is repaired by recombination, PriA is important for restarting these forks in Escherichia coli. PriA mutants are Rec− and UV sensitive and have poor viability and 10-fold elevated basal levels of SOS expression. PriA sulB mutant cells and their nucleoids were studied by differential interference contrast and fluorescence microscopy of 4′,6-diamidino-2-phenylindole-stained log phase cells. Two populations of cells were seen. Eighty four percent appeared like wild type, and 16% of the cells were filamented and had poorly partitioned chromosomes (Par−). To probe potential mechanisms leading to the two populations of cells, mutations were added to the priA sulB mutant. Mutating sulA or introducing lexA3 decreased, but did not eliminate filamentation or defects in partitioning. Mutating either recA or recB virtually eliminated the Par− phenotype. Filamentation in the recB mutant decreased to 3%, but increased to 28% in the recA mutant. The ability to resolve and/or branch migrate Holliday junctions also appeared crucial in the priA mutant because removing either recG or ruvC was lethal. Lastly, it was tested whether the ability to resolve chromosome dimers caused by XOs was important in a priA mutant by mutating dif and the C-terminal portion of ftsK. Mutation of dif showed no change in phenotype whereas ftsK1∷cat was lethal with priA2∷kan. A model is proposed where the PriA-independent pathway of replication restart functions at forks that have been repaired to non-XOs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although a functional role in copper binding has been suggested for the prion protein, evidence for binding at affinities characteristic of authentic metal-binding proteins has been lacking. By presentation of copper(II) ions in the presence of the weak chelator glycine, we have now characterized two high-affinity binding sites for divalent transition metals within the human prion protein. One is in the N-terminal octapeptide-repeat segment and has a Kd for copper(II) of 10−14 M, with other metals (Ni2+, Zn2+, and Mn2+) binding three or more orders of magnitude more weakly. However, NMR and fluorescence data reveal a previously unreported second site around histidines 96 and 111, a region of the molecule known to be crucial for prion propagation. The Kd for copper(II) at this site is 4 × 10−14 M, whereas nickel(II), zinc(II), and manganese(II) bind 6, 7, and 10 orders of magnitude more weakly, respectively, regardless of whether the protein is in its oxidized α-helical (α-PrP) or reduced β-sheet (β-PrP) conformation. A role for prion protein (PrP) in copper metabolism or transport seems likely and disturbance of this function may be involved in prion-related neurotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-gated Na+ channels are the molecular targets of local anesthetics, class I antiarrhythmic drugs, and some anticonvulsants. These chemically diverse drugs inhibit Na+ channels with complex voltage- and frequency-dependent properties that reflect preferential drug binding to open and inactivated channel states. The site-directed mutations F1764A and Y1771A in transmembrane segment IVS6 of type IIA Na+ channel alpha subunits dramatically reduce the affinity of inactivated channels for the local anesthetic etidocaine. In this study, we show that these mutations also greatly reduce the sensitivity of Na+ channels to state-dependent block by the class Ib antiarrhythmic drug lidocaine and the anticonvulsant phenytoin and, to a lesser extent, reduce the sensitivity to block by the class Ia and Ic antiarrhythmic drugs quinidine and flecainide. For lidocaine and phenytoin, which bind preferentially to inactivated Na+ channels, the mutation F1764A reduced the affinity for binding to the inactivated state 24.5-fold and 8.3-fold, respectively, while Y1771A had smaller effects. For quinidine and flecainide, which bind preferentially to the open Na+ channels, the mutations F1764A and Y1771A reduced the affinity for binding to the open state 2- to 3-fold. Thus, F1764 and Y1771 are common molecular determinants of state-dependent binding of diverse drugs including lidocaine, phenytoin, flecainide, and quinidine, suggesting that these drugs interact with a common receptor site. However, the different magnitude of the effects of these mutations on binding of the individual drugs indicates that they interact in an overlapping, but nonidentical, manner with a common receptor site. These results further define the contributions of F1764 and Y1771 to a complex drug receptor site in the pore of Na+ channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption of cationic organic dyes (methylene blue, thionine, and thiopyronine) on Qbeta bacteriophage was studied by UV-visible and fluorescence spectroscopy. The dyes have shown a strong affinity to the virus and some have been used as sensitizers for photo-induced inactivation of virus. In the methylene blue concentration range of 0.1-5 microM and at high ratios of dye to virus (greater than 1000 dye molecules per virion), the dyes bind as aggregates on the virus. Aggregation lowers the efficiency of photoinactivation because of self-quenching of the dye. At lower ratios of dye to virus (lower than 500 dye molecules per virion), the dye binds to the virus as a monomer. Fluorescence polarization and time-resolved studies of the fluorescence support the conclusions based on fluorescence quenching. Increasing the ionic strength (adding NaCl) dissociates bound dye aggregates on the virus and releases monomeric dye into the bulk solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MRP is a recently isolated ATP-binding cassette family transporter. We previously reported transfection studies that established that MRP confers multidrug resistance [Kruh, G. D., Chan, A., Myers, K., Gaughan, K., Miki, T. & Aaronson, S. A. (1994) Cancer Res. 54, 1649-1652] and that expression of MRP is associated with enhanced cellular efflux of lipophilic cytotoxic agents [Breuninger, L. M., Paul, S., Gaughan, K., Miki, T., Chan, A., Aaronson, S. A. & Kruh, G. D. (1995) Cancer Res. 55, 5342-5347]. To examine the biochemical mechanism by which MRP confers multidrug resistance, drug uptake experiments were performed using inside-out membrane vesicles prepared from NIH 3T3 cells transfected with an MRP expression vector. ATP-dependent transport was observed for several lipophilic cytotoxic agents including daunorubicin, etoposide, and vincristine, as well as for the glutathione conjugate leukotriene C4 (LTC4). However, only marginally increased uptake was observed for vinblastine and Taxol. Drug uptake was osmotically sensitive and saturable with regard to substrate concentration, with Km values of 6.3 microM, 4.4 microM, 4.2 microM, 35 nM, and 38 microM, for daunorubicin, etoposide, vincristine, LTC4, and ATP, respectively. The broad substrate specificity of MRP was confirmed by the observation that daunorubicin transport was competitively inhibited by reduced and oxidized glutathione, the glutathione conjugates S-(p-azidophenacyl)-glutathione (APA-SG) and S-(2,4-dinitrophenyl)glutathione (DNP-SG), arsenate, and the LTD4 antagonist MK571. This study establishes that MRP pumps unaltered lipophilic cytotoxic drugs, and suggests that this activity is an important mechanism by which the transporter confers multidrug resistance. The present study also indicates that the substrate specificity of MRP is overlapping but distinct from that of P-glycoprotein, and includes both the neutral or mildly cationic natural product cytotoxic drugs and the anionic products of glutathione conjugation. The widespread expression of MRP in tissues, combined with its ability to transport both lipophilic xenobiotics and the products of phase II detoxification, indicates that the transporter represents a widespread and remarkably versatile cellular defense mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pseudoautosomal region (PAR) is a segment of shared homology between the sex chromosomes. Here we report additional probes for this region of the mouse genome. Genetic and fluorescence in situ hybridization analyses indicate that one probe, PAR-4, hybridizes to the pseudoautosomal telomere and a minor locus at the telomere of chromosome 9 and that a PCR assay based on the PAR-4 sequence amplifies only the pseudoautosomal locus (DXYHgu1). The region detected by PAR-4 is structurally unstable; it shows polymorphism both between mouse strains and between animals of the same inbred strain, which implies an unusually high mutation rate. Variation occurs in the region adjacent to a (TTAGGG)n array. Two pseudoautosomal probes can also hybridize to the distal telomeres of chromosomes 9 and 13, and all three telomeres contain DXYMov15. The similarity between these telomeres may reflect ancestral telomere-telomere exchange.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localization, trafficking, and fluorescence of Aequorea green fluorescent protein (GFP) in cultured vertebrate cells transiently transfected with GFP cDNA were studied. Fluorescence of GFP in UV light was found to be strongest when cells were incubated at 30 degrees C but was barely visible at an incubation temperature of 37 degrees C. COS-1 cells, primary chicken embryonic retina cells, and carp epithelial cells were fluorescently labeled under these conditions. GFP was distributed uniformly throughout the cytoplasm and nucleus independent of cell type examined. When GFP was fused to PML protooncogene product, fluorescence was detected in a unique nuclear organelle pattern indistinguishable from that of PML protein, showing the potential use of GFP as a fluorescent tag. To analyze both function and intracellular trafficking of proteins fused to GFP, a GFP-human glucocorticoid receptor fusion construct was prepared. The GFP-human glucocorticoid receptor efficiently transactivated the mouse mammary tumor virus promoter in response to dexamethasone at 30 degrees C but not at 37 degrees C, indicating that temperature is important, even for function of the GFP fusion protein. The dexamethasone-induced translocation of GFP-human glucocorticoid receptor from cytoplasm to nucleus was complete within 15 min; the translocation could be monitored in a single living cell in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coiled bodies (CBs) are nuclear organelles whose structures appear to be highly conserved in evolution. In rapidly cycling cells, they are typically located in the nucleoplasm but are often found in contact with the nucleolus. The CBs in human cells contain a unique protein, called p80-coilin. Studies on amphibian oocyte nuclei have revealed a protein within the "sphere" organelle that shares significant structural similarity to p80-coilin. Spheres and CBs are also highly enriched in small nuclear ribonucleoproteins and other RNA-processing components. We present evidence that, like spheres, CBs contain U7 small nuclear RNA (snRNA) and associate with specific chromosomal loci. Using biotinylated 2'-O-methyl oligonucleotides complementary to the 5' end of U7 snRNA and fluorescence in situ hybridization, we show that U7 is distributed throughout the nucleoplasm, excluding nucleoli, and is concentrated in CBs. Interestingly, we found that CBs often associate with subsets of the histone, U1, and U2 snRNA gene loci in interphase HeLa-ATCC and HEp-2 monolayer cells. However, in a strain of suspension-grown HeLa cells, called HeLa-JS1000, we found a much lower rate of association between CBs and snRNA genes. Possible roles for CBs in the metabolism of these various histone and snRNAs are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultured human umbilical vein endothelial cells (EC) constitutively express a low level of CD40 antigen as detected by monoclonal antibody binding and fluorescence flow cytometric quantitation. The level of expression on EC is increased about 3-fold following 24 h treatment with optimal concentrations of tumor necrosis factor, interleukin 1, interferon beta, or interferon gamma; both interferons show greater than additive induction of CD40 when combined with tumor necrosis factor or interleukin 1. Expression of CD40 increases within 8 h of cytokine treatment and continues to increase through 72 h. A trimeric form of recombinant murine CD40 ligand acts on human EC to increase expression of leukocyte adhesion molecules, including E-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1. CD40 may be detected immunocytochemically on human microvascular EC in normal skin. We conclude that endothelial CD40 may play a role as a signaling receptor in the development of T-cell-mediated inflammatory reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pluripotent hematopoietic stem cells (PHSCs) were highly enriched from mouse bone marrow by counterflow centrifugal elutriation, lineage subtraction, and fluorescence-activated cell sorting based on high c-kit receptor expression (c-kitBR). We used reverse transcriptase polymerase chain reaction to assay the c-kitBR subset and the subsets expressing low (c-kitDULL) and no (c-kitNEG) c-kit receptor for expression of mRNA encoding hematopoietic growth factor receptors and transcription factors. The c-kitBR cells had approximately 3.5-fold more c-kit mRNA than unfractionated bone marrow cells. The c-kitDULL cells had 47-58% of the c-kit mRNA found in c-kitBR cells and the c-kitNEG cells had 4-9% of the c-kit mRNA present in c-kitBR cells. By comparing mRNA levels in c-kitBR cells (enriched for PHSCs) with those of unfractionated bone marrow, we demonstrated that c-kitBR cells contained low or undetectable levels of mRNA for c-fms, granulocyte colony-stimulating factor receptor, interleukin 5 receptor (IL-5R), and IL-7R. These same cells had moderate levels of mRNA for erythropoietin receptor, IL-3R subunits IL-3R alpha (SUT-1), AIC-2A, and AIC-2B, IL-6R and its partner gp-130, and the transcription factor GATA-1 and high levels of mRNA for transcription factors GATA-2, p45 NF-E2, and c-myb. We conclude from these findings that PHSCs are programmed to interact with stem cell factor, IL-3, and IL-6 but not with granulocyte or macrophage colony-stimulating factor. These findings also indicate that GATA-2, p45 NF-E2, and c-myb activities may be involved in PHSC maintenance or proliferation.