17 resultados para Monocyte subsets
Resumo:
The human immunodeficiency virus 1 (HIV-1) replicates more efficiently in T-cell lines expressing T-cell receptors derived from certain V beta genes, V beta 12 in particular, suggesting the effects of a superantigen. The targeted V beta 12 subset was not deleted in HIV-1-infected patients. It was therefore possible that it might represent an in vivo viral reservoir. Viral load was assessed by quantitative PCR with gag primers and with an infectivity assay to measure competent virus. It was shown that the tiny V beta 12 subset (1-2% of T cells) often has a higher viral load than other V beta subsets in infected patients. Selective HIV-1 replication in V beta 12 cells was also observed 6-8 days after in vitro infection of peripheral blood lymphocytes from normal, HIV-1 negative donors. Viral replication in targeted V beta subsets may serve to promote a biologically relevant viral reservoir.
Resumo:
Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix.