58 resultados para Modification of the microflora
Resumo:
Peroxynitrite-dependent formation of nitrotyrosine has been associated with inactivation of various enzymes and proteins possessing functionally important tyrosines. We have previously reported an enzymatic activity modifying the nitrotyrosine residues in nitrated proteins. Here we are describing a nonenzymatic reduction of nitrotyrosine to aminotyrosine, which depends on heme and thiols. Various heme-containing proteins can mediate the reaction, although the reaction also is catalyzed by heme. The reaction is most effective when vicinal thiols are used as reducing agents, although ascorbic acid also can replace thiols with lesser efficiency. The reaction could be inhibited by (z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1, but not other tested NO donors. HPLC with electrochemical detection analysis of the reaction identified aminotyrosine as the only reaction product. The reduction of nitrotyrosine was most effective at a pH close to physiological and was markedly decreased in acidic conditions. Various nitrophenol compounds also were modified in this reaction. Understanding the mechanism of this reaction could help define the enzymatic modification of nitrotyrosine-containing proteins. Furthermore, this also could assist in understanding the role of nitrotyrosine formation and reversal in the regulation of various proteins containing nitrotyrosine. It also could help define the role of nitric oxide and other reactive species in various disease states.
Resumo:
Helicobacter pylori is a Gram-negative bacterial pathogen with a small genome of 1.64–1.67 Mb. More than 20 putative DNA restriction-modification (R-M) systems, comprising more than 4% of the total genome, have been identified in the two completely sequenced H. pylori strains, 26695 and J99, based on sequence similarities. In this study, we have investigated the biochemical activities of 14 Type II R-M systems in H. pylori 26695. Less than 30% of the Type II R-M systems in 26695 are fully functional, similar to the results obtained from strain J99. Although nearly 90% of the R-M genes are shared by the two H. pylori strains, different sets of these R-M genes are functionally active in each strain. Interestingly, all strain-specific R-M genes are active, whereas most shared genes are inactive. This agrees with the notion that strain-specific genes have been acquired more recently through horizontal transfer from other bacteria and selected for function. Thus, they are less likely to be impaired by random mutations. Our results also show that H. pylori has extremely diversified R-M systems in different strains, and that the diversity may be maintained by constantly acquiring new R-M systems and by inactivating and deleting the old ones.
Resumo:
Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH2 terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.
Resumo:
During T-cell activation, Ser59 in the unique N-terminal region of p56lck is phosphorylated. Mutation of Ser59 to Glu59 mimics Ser59 phosphorylation, and upon CD4 crosslinking, this mutant p56lck induces tyrosine phosphorylation of intracellular proteins distinct from those induced by wild-type p56lck. Mutant and wild-type p56lck have similar affinities for CD4 and similar kinase activities. In glutathione S-transferase fusion proteins, the p56lck Src homology 2 (SH2) domain with the SH3 domain and the unique N-terminal region (including Ser59) has a different binding specificity for phosphotyrosyl proteins than the SH2 domain alone. Either deletion of the unique N-terminal region or mutation of Ser59 to Glu59 in the fusion protein reverts the phosphotyrosyl protein binding specificity back to that of the SH2 domain alone. These results suggest that phosphorylation of Ser59 regulates the function of p56lck by controlling binding specificity of its SH2 domain.
Resumo:
Studies in our laboratory as well as others strongly suggest that salicylic acid (SA) plays an important signaling role in plant defense against pathogens. We have found that increases in endogenous SA levels correlates with both resistance of tobacco to infection with tobacco mosaic virus and induction of defense-related genes such as that encoding pathogenesis-related protein 1 (PR-1). Some of this newly synthesized SA was conjugated to glucose to form SA beta-glucoside. A cell wall-associated beta-glucosidase activity that releases SA from this glucoside has been identified, suggesting that SA beta-glucoside serves as an inactive storage form of SA. By purifying a soluble SA-binding protein and isolating its encoding cDNA from tobacco, we have been able to further characterize the mechanism of SA signaling. This protein is a catalase, and binding of SA and its biologically active analogues inhibited catalase's ability to convert H2O2 to O2 and H2O. The resulting elevated levels of cellular H2O2 appeared to induce PR-1 gene expression, perhaps by acting as a second messenger. Additionally, transgenic tobacco expressing an antisense copy of the catalase gene and exhibiting depressed levels of catalase also showed constitutive expression of PR-1 genes. To further dissect the SA signaling pathway, we have tested several abiotic inducers of PR gene expression and disease resistance for their ability to stimulate SA production. Levels of SA and its glucoside rose following application of all of the inducers except 2,6-dichloroisonicotinic acid. 2,6-Dichloroisonicotinic acid was found to bind catalase directly and inhibit its enzymatic activity. Thus, it appears that many compounds that induce PR gene expression and disease resistance in plants inactivate catalases directly or indirectly.
Resumo:
Fatty acid binding proteins (FABPs) exhibit a β-barrel topology, comprising 10 antiparallel β-sheets capped by two short α-helical segments. Previous studies suggested that fatty acid transfer from several FABPs occurs during interaction between the protein and the acceptor membrane, and that the helical domain of the FABPs plays an important role in this process. In this study, we employed a helix-less variant of intestinal FABP (IFABP-HL) and examined the rate and mechanism of transfer of fluorescent anthroyloxy fatty acids (AOFA) from this protein to model membranes in comparison to the wild type (wIFABP). In marked contrast to wIFABP, IFABP-HL does not show significant modification of the AOFA transfer rate as a function of either the concentration or the composition of the acceptor membranes. These results suggest that the transfer of fatty acids from IFABP-HL occurs by an aqueous diffusion-mediated process, i.e., in the absence of the helical domain, effective collisional transfer of fatty acids to membranes does not occur. Binding of wIFABP and IFABP-HL to membranes was directly analyzed by using a cytochrome c competition assay, and it was shown that IFABP-HL was 80% less efficient in preventing cytochrome c from binding to membranes than the native IFABP. Collectively, these results indicate that the α-helical region of IFABP is involved in membrane interactions and thus plays a critical role in the collisional mechanism of fatty acid transfer from IFABP to phospholipid membranes.
Resumo:
Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism that perform a variety of essential functions in higher plants. Studies over the past 30 years have supported a model in which flavonoid metabolism is catalyzed by an enzyme complex localized to the endoplasmic reticulum [Hrazdina, G. & Wagner, G. J. (1985) Arch. Biochem. Biophys. 237, 88–100]. To test this model further we assayed for direct interactions between several key flavonoid biosynthetic enzymes in developing Arabidopsis seedlings. Two-hybrid assays indicated that chalcone synthase, chalcone isomerase (CHI), and dihydroflavonol 4-reductase interact in an orientation-dependent manner. Affinity chromatography and immunoprecipitation assays further demonstrated interactions between chalcone synthase, CHI, and flavonol 3-hydroxylase in lysates from Arabidopsis seedlings. These results support the hypothesis that the flavonoid enzymes assemble as a macromolecular complex with contacts between multiple proteins. Evidence was also found for posttranslational modification of CHI. The importance of understanding the subcellular organization of elaborate enzyme systems is discussed in the context of metabolic engineering.
Resumo:
During reverse transcription of retroviral RNA, synthesis of (−) strand DNA is primed by a cellular tRNA that anneals to an 18-nt primer binding site within the 5′ long terminal repeat. For (+) strand synthesis using a (−) strand DNA template linked to the tRNA primer, only the first 18 nt of tRNA are replicated to regenerate the primer binding site, creating the (+) strand strong stop DNA intermediate and providing a 3′ terminus capable of strand transfer and further elongation. On model HIV templates that approximate the (−) strand linked to natural modified or synthetic unmodified tRNA3Lys, we find that a (+) strand strong stop intermediate of the proper length is generated only on templates containing the natural, modified tRNA3Lys, suggesting that a posttranscriptional modification provides the termination signal. In the presence of a recipient template, synthesis after strand transfer occurs only from intermediates generated from templates containing modified tRNA3Lys. Reverse transcriptase from Moloney murine leukemia virus and avian myoblastosis virus shows the same requirement for a modified tRNA3Lys template. Because all retroviral tRNA primers contain the same 1-methyl-A58 modification, our results suggest that 1-methyl-A58 is generally required for termination of replication 18 nt into the tRNA sequence, generating the (+) strand intermediate, strand transfer, and subsequent synthesis of the entire (+) strand. The possibility that the host methyl transferase responsible for methylating A58 may provide a target for HIV chemotherapy is discussed.
Resumo:
Interaction between a peptide hormone and extracellular domains of its receptor is a crucial step for initiation of hormone action. We have developed a modification of the yeast two-hybrid system to study this interaction and have used it to characterize the interaction of insulin-like growth factor 1 (IGF-1) with its receptor by using GAL4 transcriptional regulation with a β-galactosidase assay as readout. In this system, IGF-1 and proIGF-1 bound to the cysteine-rich domain, extracellular domain, or entire IGF-1 proreceptor. This interaction was specific. Thus, proinsulin showed no significant interaction with the IGF-1 receptor, while a chimeric proinsulin containing the C-peptide of IGF-1 had an intermediate interaction, consistent with its affinity for the IGF-1 receptor. Over 2000 IGF-1 mutants were generated by PCR and screened for interaction with the color assay. About 40% showed a strong interaction, 20% showed an intermediate interaction, and 40% give little or no signal. Of 50 mutants that were sequenced, several (Leu-5 → His, Glu-9 → Val, Arg-37 → Gly, and Met-59 → Leu) appeared to enhance receptor association, others resulted in weaker receptor interaction (Tyr-31 → Phe and Ile-43 → Phe), and two gave no detectable signal (Leu-14 → Arg and Glu-46 → Ala). Using PCR-based mutagenesis with proinsulin, we also identified a gain of function mutant (proinsulin Leu-17 → Pro) that allowed for a strong IGF-1–receptor interaction. These data demonstrate that the specificity of the interaction between a hormone and its receptor can be characterized with high efficiency in the two-hybrid system and that novel hormone analogues may be found by this method.
Resumo:
Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2′-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1°C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3′ ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3′-5′ exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-Å resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 Å and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2′-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.
Resumo:
In many human cancers, tumor-specific chromosomal rearrangements are known to create chimeric products with the ability to transform cells. The EWS/WT1 protein is such a fusion product, resulting from a t(11;22) chromosomal translocation in desmoplastic small round cell tumors, where 265 aa from the EWS amino terminus are fused to the DNA binding domain of the WT1 tumor suppressor gene. Herein, we find that EWS/WT1 is phosphorylated in vivo on serine and tyrosine residues and that this affects DNA binding and homodimerization. We also show that EWS/WT1 can interact with, and is a substrate for, modification on tyrosine residues by c-Abl. Tyrosine phosphorylation of EWS/WT1 by c-Abl negatively regulates its DNA binding properties. These results indicate that the biological activity of EWS/WT1 is closely linked to its phosphorylation status.
Resumo:
The overall folded (global) structure of mRNA may be critical to translation and turnover control mechanisms, but it has received little experimental attention. Presented here is a comparative analysis of the basic features of the global secondary structure of a synthetic mRNA and the same intracellular eukaryotic mRNA by dimethyl sulfate (DMS) structure probing. Synthetic MFA2 mRNA of Saccharomyces cerevisiae first was examined by using both enzymes and chemical reagents to determine single-stranded and hybridized regions; RNAs with and without a poly(A) tail were compared. A folding pattern was obtained with the aid of the mfold program package that identified the model that best satisfied the probing data. A long-range structural interaction involving the 5′ and 3′ untranslated regions and causing a juxtaposition of the ends of the RNA, was examined further by a useful technique involving oligo(dT)-cellulose chromatography and antisense oligonucleotides. DMS chemical probing of A and C nucleotides of intracellular MFA2 mRNA was then done. The modification data support a very similar intracellular structure. When low reactivity of A and C residues is found in the synthetic RNA, ≈70% of the same sites are relatively more resistant to DMS modification in vivo. A slightly higher sensitivity to DMS is found in vivo for some of the A and C nucleotides predicted to be hybridized from the synthetic structural model. With this small mRNA, the translation process and mRNA-binding proteins do not block DMS modifications, and all A and C nucleotides are modified the same or more strongly than with the synthetic RNA.
Resumo:
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the α2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative α2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the α3 and α4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B α2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B α2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the α2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.
Resumo:
Polyglycylation, a posttranslational modification of tubulin, was discovered in the highly stable axonemal microtubules of Paramecium cilia where it involves the lateral linkage of up to 34 glycine units per tubulin subunit. The observation of this type of posttranslational modification mainly in axonemes raises the question as to its relationship with axonemal organization and with microtubule stability. This led us to investigate the glycylation status of cytoplasmic microtubules that correspond to the dynamic microtubules in Paramecium. Two anti-glycylated tubulin monoclonal antibodies (mAbs), TAP 952 and AXO 49, are shown here to exhibit different affinities toward mono- and polyglycylated synthetic tubulin peptides. Using immunoblotting and mass spectrometry, we show that cytoplasmic tubulin is glycylated. In contrast to the highly glycylated axonemal tubulin, which is recognized by the two mAbs, cytoplasmic tubulin reacts exclusively with TAP 952, and the α- and β- tubulin subunits are modified by only 1–5 and 2–9 glycine units, respectively. Our analyses suggest that most of the cytoplasmic tubulin contains side chain lengths of 1 or 2 glycine units distributed on several glycylation sites. The subcellular partition of distinct polyglycylated tubulin isoforms between cytoplasmic and axonemal compartments implies the existence of regulatory mechanisms for glycylation. By following axonemal tubulin immunoreactivity with anti-glycylated tubulin mAbs upon incubation with a Paramecium cellular extract, the presence of a deglycylation enzyme is revealed in the cytoplasm of this organism. These observations establish that polyglycylation is reversible and indicate that, in vivo, an equilibrium between glycylating and deglycylating enzymes might be responsible for the length of the oligoglycine side chains of tubulin.
Resumo:
The Drosophila fusome is a germ cell-specific organelle assembled from membrane skeletal proteins and membranous vesicles. Mutational studies that have examined inactivating alleles of fusome proteins indicate that the organelle plays central roles in germ cell differentiation. Although mutations in genes encoding skeletal fusome components prevent proper cyst formation, mutations in the bag-of-marbles gene disrupt the assembly of membranous cisternae within the fusome and block cystoblast differentiation altogether. To understand the relationship between fusome cisternae and cystoblast differentiation, we have begun to identify other proteins in this network of fusome tubules. In this article we present evidence that the fly homologue of the transitional endoplasmic reticulum ATPase (TER94) is one such protein. The presence of TER94 suggests that the fusome cisternae grow by vesicle fusion and are a germ cell modification of endoplasmic reticulum. We also show that fusome association of TER94 is Bam-dependent, suggesting that cystoblast differentiation may be linked to fusome reticulum biogenesis.