27 resultados para Model compliant mechanisms
Resumo:
Microorganisms modify rates and mechanisms of chemical and physical weathering and clay growth, thus playing fundamental roles in soil and sediment formation. Because processes in soils are inherently complex and difficult to study, we employ a model based on the lichen–mineral system to identify the fundamental interactions. Fixed carbon released by the photosynthetic symbiont stimulates growth of fungi and other microorganisms. These microorganisms directly or indirectly induce mineral disaggregation, hydration, dissolution, and secondary mineral formation. Model polysaccharides were used to investigate direct mediation of mineral surface reactions by extracellular polymers. Polysaccharides can suppress or enhance rates of chemical weathering by up to three orders of magnitude, depending on the pH, mineral surface structure and composition, and organic functional groups. Mg, Mn, Fe, Al, and Si are redistributed into clays that strongly adsorb ions. Microbes contribute to dissolution of insoluble secondary phosphates, possibly via release of organic acids. These reactions significantly impact soil fertility. Below fungi–mineral interfaces, mineral surfaces are exposed to dissolved metabolic byproducts. Through this indirect process, microorganisms can accelerate mineral dissolution, leading to enhanced porosity and permeability and colonization by microbial communities.
Resumo:
Deflection of the hair bundle atop a sensory hair cell modulates the open probability of mechanosensitive ion channels. In response to sustained deflections, hair cells adapt. Two fundamentally distinct models have been proposed to explain transducer adaptation. Both models support the notion that channel open probability is modulated by calcium that enters via the transduction channels. Both also suggest that the primary effect of adaptation is to shift the deflection-response [I(X)] relationship in the direction of the applied stimulus, thus maintaining hair bundle sensitivity. The models differ in several respects. They operate on different time scales: the faster on the order of a few milliseconds or less and the slower on the order of 10 ms or more. The model proposed to explain fast adaptation suggests that calcium enters and binds at or near the transduction channels to stabilize a closed conformation. The model proposed to explain the slower adaptation suggests that adaptation is mediated by an active, force-generating process that regulates the effective stimulus applied to the transduction channels. Here we discuss the evidence in support of each model and consider the possibility that both may function to varying degrees in hair cells of different species and sensory organs.
Resumo:
Ca2+ in rooting medium is essential for root elongation, even in the absence of added toxicants. In the presence of rhizotoxic levels of Al3+, H+, or Na+ (or other cationic toxicants), supplementation of the medium with higher levels of Ca2+ alleviates growth inhibition. Experiments to determine the mechanisms of alleviation entailed measurements of root elongation in wheat (Triticum aestivum L. cv Scout 66) seedlings in controlled medium. A Gouy-Chapman-Stern model was used to compute the electrical potentials and the activities of ions at the root-cell plasma membrane surfaces. Analysis of root elongation relative to the computed surface activities of ions revealed three separate mechanisms of Ca2+ alleviation. Mechanism I is the displacement of cell-surface toxicant by the Ca2+-induced reduction in cell-surface negativity. Mechanism II is the restoration of Ca2+ at the cell surface if the surface Ca2+ has been reduced by the toxicant to growth-limiting levels. Mechanism III is the collective ameliorative effect of Ca2+ beyond mechanisms I and II, and may involve Ca2+-toxicant interactions at the cell surface other than the displacement interactions of mechanisms I and II. Mechanism I operated in the alleviation of all of the tested toxicities; mechanism II was generally a minor component of alleviation; and mechanism III was toxicant specific and operated strongly in the alleviation of Na+ toxicity, moderately in the alleviation of H+ toxicity, and not at all in the alleviation of Al3+ toxicity.
Resumo:
The full sequence of the genome-linked viral protein (VPg) cistron located in the central part of potato virus Y (common strain) genome has been identified. The VPg gene codes for a protein of 188 amino acids, with significant homology to other known potyviral VPg polypeptides. A three-dimensional model structure of VPg is proposed on the basis of similarity of hydrophobic-hydrophilic residue distribution to the sequence of malate dehydrogenase of known crystal structure. The 5' end of the viral RNA can be fitted to interact with the protein through the exposed hydroxyl group of Tyr-64, in agreement with experimental data. The complex favors stereochemically the formation of a phosphodiester bond [5'-(O4-tyrosylphospho)adenylate] typical for representatives of picornavirus-like viruses. The chemical mechanisms of viral RNA binding to VPg are discussed on the basis of the model structure of protein-RNA complex.
Resumo:
Visual responses of neurons in parietal area 7a are modulated by a combined eye and head position signal in a multiplicative manner. Neurons with multiplicative responses can act as powerful computational elements in neural networks. In the case of parietal cortex, multiplicative gain modulation appears to play a crucial role in the transformation of object locations from retinal to body-centered coordinates. It has proven difficult to uncover single-neuron mechanisms that account for neuronal multiplication. Here we show that multiplicative responses can arise in a network model through population effects. Specifically, neurons in a recurrently connected network with excitatory connections between similarly tuned neurons and inhibitory connections between differently tuned neurons can perform a product operation on additive synaptic inputs. The results suggest that parietal responses may be based on this architecture.
Resumo:
Genomic double-strand breaks (DSBs) are key intermediates in recombination reactions of living organisms. We studied the repair of genomic DSBs by homologous sequences in plants. Tobacco plants containing a site for the highly specific restriction enzyme I-Sce I were cotransformed with Agrobacterium strains carrying sequences homologous to the transgene locus and, separately, containing the gene coding for the enzyme. We show that the induction of a DSB can increase the frequency of homologous recombination at a specific locus by up to two orders of magnitude. Analysis of the recombination products demonstrates that a DSB can be repaired via homologous recombination by at least two different but related pathways. In the major pathway, homologies on both sides of the DSB are used, analogous to the conservative DSB repair model originally proposed for meiotic recombination in yeast. Homologous recombination of the minor pathway is restricted to one side of the DSB as described by the nonconservative one-sided invasion model. The sequence of the recombination partners was absolutely conserved in two cases, whereas in a third case, a deletion of 14 bp had occurred, probably due to DNA polymerase slippage during the copy process. The induction of DSB breaks to enhance homologous recombination can be applied for a variety of approaches of plant genome manipulation.
Resumo:
The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.
Resumo:
Multiscale asymptotic methods developed previously to study macromechanical wave propagation in cochlear models are generalized here to include active control of a cochlear partition having three subpartitions, the basilar membrane, the reticular lamina, and the tectorial membrane. Activation of outer hair cells by stereocilia displacement and/or by lateral wall stretching result in a frequency-dependent force acting between the reticular lamina and basilar membrane. Wavelength-dependent fluid loads are estimated by using the unsteady Stokes' equations, except in the narrow gap between the tectorial membrane and reticular lamina, where lubrication theory is appropriate. The local wavenumber and subpartition amplitude ratios are determined from the zeroth order equations of motion. A solvability relation for the first order equations of motion determines the subpartition amplitudes. The main findings are as follows: The reticular lamina and tectorial membrane move in unison with essentially no squeezing of the gap; an active force level consistent with measurements on isolated outer hair cells can provide a 35-dB amplification and sharpening of subpartition waveforms by delaying dissipation and allowing a greater structural resonance to occur before the wave is cut off; however, previously postulated activity mechanisms for single partition models cannot achieve sharp enough tuning in subpartitioned models.
Resumo:
Model AB, a 20-amino acid peptide that was designed to adopt an alpha beta tertiary structure stabilized by hydrophobic interactions between residues in adjacent helical and extended segments, exhibited large pKa shifts of several ionizable groups and slow hydrogen/deuterium exchange rates of nearly all the peptide amide groups [Butcher, D. J., Bruch, M. D. & Moe, G. T. (1995) Biopolymers 36, 109-120]. These properties, which depend on structure and hydration, are commonly observed in larger proteins but are quite unusual for small peptides. To identify which of several possible features of the peptide design are most important in determining these properties, several closely related analogs of Model AB were characterized by CD and NMR spectroscopy. The results show that hydrophobic interactions between adjacent helical and extended segments are structure-determining and have the additional effect of altering water-peptide interactions over much of the peptide surface. These results may have important implications for understanding mechanisms of protein folding and for the design of independently folding peptides.
Resumo:
The cholangiopathies are a group of hepatobiliary diseases in which intrahepatic bile duct epithelial cells, or cholangiocytes, are the target for a variety of destructive processes, including immune-mediated damage. We tested the hypothesis that cholangitis could be induced in rodents by immunization with highly purified cholangiocytes. Inbred Wistar rats were immunized with purified hyperplastic cholangiocytes isolated after bile duct ligation from either syngeneic Wistar or allogeneic Fischer 344 rats; control rats were immunized with bovine serum albumin (BSA) or hepatocytes. After immunization with cholangiocytes, recipient animals developed histologic evidence of nonsuppurative cholangitis without inflammation in other organs; groups immunized with BSA or hepatocytes showed no cholangitis. Immunohistochemical studies revealed that portal tract infiltrates around bile ducts consisted of CD3-positive lymphocytes, some of which expressed major histocompatibility complex class II antigen; B cells and exogenous monocytes/macrophages were essentially absent. Transfer of unfractionated ConA-stimulated spleen cells from cholangiocyte-immunized (but not BSA-immunized) rats into recipients also caused nonsuppurative cholangitis. Moreover, these splenocytes from cholangiocyte-immunized (but not BSA-immunized) rats were cytotoxic in vitro for cultured rodent cholangiocytes; no cytotoxicity was observed against a rat hepatocyte cell line. Also, a specific antibody response in sera of cholangiocyte-immunized rats was demonstrated by immunoblots against cholangiocyte proteins. Finally, cholangiograms in cholangiocyte-immunized rats showed distortion and tortuosity of the entire intrahepatic biliary ductal system. This unique rodent model of experimental cholangitis demonstrates the importance of immune mechanisms in the pathogenesis of cholangitis and will prove useful in exploring the mechanisms by which the immune system targets and damages cholangiocytes.
Resumo:
We have used capacitance measurements with a 1-microsecond voltage clamp technique to probe electrogenic ion-transporter interactions in giant excised membrane patches. The hydrophobic ion dipicrylamine was used to test model predictions for a simple charge-moving reaction. The voltage and frequency dependencies of the apparent dipicrylamine-induced capacitance, monitored by 1-mV sinusoidal perturbations, correspond to single charges moving across 76% of the membrane field at a rate of 9500 s-1 at 0 mV. For the cardiac Na,K pump, the combined presence of cytoplasmic ATP and sodium induces an increase of apparent membrane capacitance which requires the presence of extracellular sodium. The dependencies of capacitance changes on frequency, voltage, ATP, and sodium verify that phosphorylation enables a slow, 300- to 900-s-1, pump transition (the E1-E2 conformational change), which in turn enables fast, electrogenic, extracellular sodium binding reactions. For the GAT1 (gamma-aminobutyric acid,Na,Cl) cotransporter, expressed in Xenopus oocyte membrane, we find that chloride binding from the cytoplasmic side, and probably sodium binding from the extracellular side, results in a decrease of membrane capacitance monitored with 1- to 50-kHz perturbation frequencies. Evidently, ion binding by the GAT1 transporter suppresses an intrinsic fast charge movement which may originate from a mobility of charged residues of the transporter binding sites. The results demonstrate that fast capacitance measurements can provide new insight into electrogenic processes closely associated with ion binding by membrane transporters.
Resumo:
Cultural inheritance can be considered as a mechanism of adaptation made possible by communication, which has reached its greatest development in humans and can allow long-term conservation or rapid change of culturally transmissible traits depending on circumstances and needs. Conservativeness/flexibility is largely modulated by mechanisms of sociocultural transmission. An analysis was carried out by testing the fit of three models to 47 cultural traits (classified in six groups) in 277 African societies. Model A (demic diffusion) is conservation over generations, as shown by correlations of cultural traits with language, used as a measure of historical connection. Model B (environmental adaptation) is measured by correlation to the natural environment. Model C (cultural diffusion) is the spread to neighbors by social contact in an epidemic-like fashion and was tested by measuring the tightness of geographic clustering of the traits. Most traits examined, in particular those affecting family structure and kinship, showed great conservation over generations, as shown by the fit of model A. They are most probably transmitted by family members. This is in agreement with the theoretical demonstration that cultural transmission in the family (vertical) is the most conservative one. Some traits show environmental effects, indicating the importance of adaptation to physical environment. Only a few of the 47 traits showed tight geographic clustering indicating that their spread to nearest neighbors follows model C, as is usually the case for transmission among unrelated people (called horizontal transmission).