18 resultados para Mitochondrial Genome
Resumo:
GOBASE (http://megasun.bch.umontreal.ca/gobase/) is a network-accessible biological database, which is unique in bringing together diverse biological data on organelles with taxonomically broad coverage, and in furnishing data that have been exhaustively verified and completed by experts. So far, we have focused on mitochondrial data: GOBASE contains all published nucleotide and protein sequences encoded by mitochondrial genomes, selected RNA secondary structures of mitochondria-encoded molecules, genetic maps of completely sequenced genomes, taxonomic information for all species whose sequences are present in the database and organismal descriptions of key protistan eukaryotes. All of these data have been integrated and organized in a formal database structure to allow sophisticated biological queries using terms that are inherent in biological concepts. Most importantly, data have been validated, completed, corrected and standardized, a prerequisite of meaningful analysis. In addition, where critical data are lacking, such as genetic maps and RNA secondary structures, they are generated by the GOBASE team and collaborators, and added to the database. The database is implemented in a relational database management system, but features an object-oriented view of the biological data through a Web/Genera-generated World Wide Web interface. Finally, we have developed software for database curation (i.e. data updates, validation and correction), which will be described in some detail in this paper.
Resumo:
Mitochondrial genes for cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 5 (ND5) of the sea anemone Metridium senile (phylum Cnidaria) each contain a group I intron. This is in contrast to the reported absence of introns in all other metazoan mtDNAs so far examined. The ND5 intron is unusual in that it ends with A and contains two genes (ND1 and ND3) encoding additional subunits of NADH dehydrogenase. Correctly excised ND5 introns are not circularized but are precisely cleaved near their 3' ends and polyadenylylated to provide bicistronic transcripts of ND1 and ND3. COI introns, which encode a putative homing endonuclease, circularize, but in a way that retains the entire genome-encoded intron sequence (other group I introns are circularized with loss of a short segment of the intron 5' end). Introns were detected in the COI and ND5 genes of other sea anemones, but not in the COI and ND5 genes of other cnidarians. This suggests that the sea anemone mitochondrial introns may have been acquired relatively recently.
Resumo:
Although mitochondrial DNA is known to encode a limited number (<20) of the polypeptide components of respiratory complexes I, III, IV, and V, genes for components of complex II [succinate dehydrogenase (ubiquinone); succinate:ubiquinone oxidoreductase, EC 1.3.5.1] are conspicuously lacking in mitochondrial genomes so far characterized. Here we show that the same three subunits of complex II are encoded in the mitochondrial DNA of two phylogenetically distant eukaryotes, Porphyra purpurea (a photosynthetic red alga) and Reclinomonas americana (a heterotrophic zooflagellate). These complex II genes, sdh2, sdh3, and sdh4, are homologs, respectively, of Escherichia coli sdhB, sdhC, and sdhD. In E. coli, sdhB encodes the iron-sulfur subunit of succinate dehydrogenase (SDH), whereas sdhC and sdhD specify, respectively, apocytochrome b558 and a hydrophobic 13-kDa polypeptide, which together anchor SDH to the inner mitochondrial membrane. Amino acid sequence similarities indicate that sdh2, sdh3, and sdh4 were originally encoded in the protomitochondrial genome and have subsequently been transferred to the nuclear genome in most eukaryotes. The data presented here are consistent with the view that mitochondria constitute a monophyletic lineage.