99 resultados para Methyl Transferase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a β-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Gln-Pro-Ser-Asn, with the second, third, and sixth position present in the D-configuration. The gene cluster from B. subtilis ATCC6633 specifying the biosynthesis of mycosubtilin was identified. The putative operon spans 38 kb and consists of four ORFs, designated fenF, mycA, mycB, and mycC, with strong homologies to the family of peptide synthetases. Biochemical characterization showed that MycB specifically adenylates tyrosine, as expected for mycosubtilin synthetase, and insertional mutagenesis of the operon resulted in a mycosubtilin-negative phenotype. The mycosubtilin synthetase reveals features unique for peptide synthetases as well as for fatty acid synthases: (i) The mycosubtilin synthase subunit A (MycA) combines functional domains derived from peptide synthetases, amino transferases, and fatty acid synthases. MycA represents the first example of a natural hybrid between these enzyme families. (ii) The organization of the synthetase subunits deviates from that commonly found in peptide synthetases. On the basis of the described characteristics of the mycosubtilin synthetase, we present a model for the biosynthesis of iturin lipopeptide antibiotics. Comparison of the sequences flanking the mycosubtilin operon of B. subtilis ATCC6633, with the complete genome sequence of B. subtilis strain 168 indicates that the fengycin and mycosubtilin lipopeptide synthetase operons are exchanged between the two B. subtilis strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although d amino acids are prominent in bacteria, they generally are thought not to occur in mammals. Recently, high levels of d-serine have been found in mammalian brain where it activates glutamate/N-methyl-d-aspartate receptors by interacting with the “glycine site” of the receptor. Because amino acid racemases are thought to be restricted to bacteria and insects, the origin of d-serine in mammals has been puzzling. We now report cloning and expression of serine racemase, an enzyme catalyzing the formation of d-serine from l-serine. Serine racemase is a protein representing an additional family of pyridoxal-5′ phosphate-dependent enzymes in eukaryotes. The enzyme is enriched in rat brain where it occurs in glial cells that possess high levels of d-serine in vivo. Occurrence of serine racemase in the brain demonstrates the conservation of d-amino acid metabolism in mammals with implications for the regulation of N-methyl-d-aspartate neurotransmission through glia-neuronal interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terminal deoxynucleotidyl transferase (TdT) catalyzes the addition of nucleotides at the junctions of rearranging Ig and T cell receptor gene segments, thereby generating antigen receptor diversity. Ku is a heterodimeric protein composed of 70- and 86-kDa subunits that binds DNA ends and is required for V(D)J recombination and DNA double-strand break (DSB) repair. We provide evidence for a direct interaction between TdT and Ku proteins. Studies with a baculovirus expression system show that TdT can interact specifically with each of the Ku subunits and with the heterodimer. The interaction between Ku and TdT is also observed in pre-T cells with endogenously expressed proteins. The protein–protein interaction is DNA independent and occurs at physiological salt concentrations. Deletion mutagenesis experiments reveal that the N-terminal region of TdT (131 amino acids) is essential for interaction with the Ku heterodimer. This region, although not important for TdT polymerization activity, contains a BRCA1 C-terminal domain that has been shown to mediate interactions of proteins involved in DNA repair. The induction of DSBs in Cos-7 cells transfected with a human TdT expression construct resulted in the appearance of discrete nuclear foci in which TdT and Ku colocalize. The physical association of TdT with Ku suggests a possible mechanism by which TdT is recruited to the sites of DSBs such as V(D)J recombination intermediates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The class I glutathione S-transferases (GSTs) of Anopheles gambiae are encoded by a complex gene family. We describe the genomic organization of three members of this family, which are sequentially arranged on the chromosome in divergent orientations. One of these genes, aggst1-2, is intronless and has been described. In contrast, the two A. gambiae GST genes (aggst1α and aggst1β) reported within are interrupted by introns. The gene aggst1α contains five coding exons that are alternatively spliced to produce four mature GST transcripts, each of which contains a common 5′ exon encoding the N termini of the GST protein spliced to one of four distinct 3′ exons encoding the carboxyl termini. All four of the alternative transcripts of aggst1α are expressed in A. gambiae larvae, pupae, and adults. We report on the involvement of alternative RNA splicing in generating multiple functional GST transcripts. A cDNA from the aggst1β gene was detected in adult mosquitoes, demonstrating that this GST gene is actively transcribed. The percentage similarity of the six cDNAs transcribed from the three GST genes range from 49.5% to 83.1% at the nucleotide level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular basis for developing symptomatic epilepsy (epileptogenesis) remains ill defined. We show here in a well characterized hippocampal culture model of epilepsy that the induction of epileptogenesis is Ca2+-dependent. The concentration of intracellular free Ca2+ ([Ca2+]i) was monitored during the induction of epileptogenesis by prolonged electrographic seizure activity induced through low-Mg2+ treatment by confocal laser-scanning fluorescent microscopy to directly correlate changes in [Ca2+]i with alterations in membrane excitability measured by intracellular recording using whole-cell current–clamp techniques. The induction of long-lasting spontaneous recurrent epileptiform discharges, but not the Mg2+-induced spike discharges, was prevented in low-Ca2+ solutions and was dependent on activation of the N-methyl-d-aspartate (NMDA) receptor. The results provide direct evidence that prolonged activation of the NMDA–Ca2+ transduction pathway causes a long-lasting plasticity change in hippocampal neurons causing increased excitability leading to the occurrence of spontaneous, recurrent epileptiform discharges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Block of the channel of N-methyl-d-aspartate (NMDA) receptors by external Mg2+ (Mgo2+) has broad implications for the many physiological and pathological processes that depend on NMDA receptor activation. An essential property of channel block by Mgo2+ is its powerful voltage dependence. A widely cited explanation for the strength of the voltage dependence of block is that the Mgo2+-binding site is located deep in the channel of NMDA receptors; Mgo2+ then would sense most of the membrane potential field during block. However, recent electrophysiological and mutagenesis studies suggest that the blocking site cannot be deep enough to account for the voltage dependence of Mgo2+ block. Here we describe the basis for this discrepancy: the magnitude and voltage dependence of channel block by Mgo2+ are strongly regulated by external and internal permeant monovalent cations. Our data support a model in which access to the channel by Mgo2+ is prevented when permeant ion-binding sites at the external entrance to the channel are occupied. Mgo2+ can block the channel only when the permeant ion-binding sites are unoccupied and then can either unblock back to the external solution or permeate the channel. Unblock to the external solution is prevented if external permeant ions bind while Mg2+ blocks the channel, although permeation is still permitted. The model provides an explanation for the strength of the voltage dependence of Mgo2+ block and quantifies the interdependence of permanent and blocking ion binding to NMDA receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signaling pathways that allow plants to mount defenses against chewing insects are known to be complex. To investigate the role of jasmonate in wound signaling in Arabidopsis and to test whether parallel or redundant pathways exist for insect defense, we have studied a mutant (fad3–2 fad7–2 fad8) that is deficient in the jasmonate precursor linolenic acid. Mutant plants contained negligible levels of jasmonate and showed extremely high mortality (≈80%) from attack by larvae of a common saprophagous fungal gnat, Bradysia impatiens (Diptera: Sciaridae), even though neighboring wild-type plants were largely unaffected. Application of exogenous methyl jasmonate substantially protected the mutant plants and reduced mortality to ≈12%. These experiments precisely define the role of jasmonate as being essential for the induction of biologically effective defense in this plant–insect interaction. The transcripts of three wound-responsive genes were shown not to be induced by wounding of mutant plants but the same transcripts could be induced by application of methyl jasmonate. By contrast, measurements of transcript levels for a gene encoding glutathione S-transferase demonstrated that wound induction of this gene is independent of jasmonate synthesis. These results indicate that the mutant will be a good genetic model for testing the practical effectiveness of candidate defense genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-methyl-d-aspartate receptors (NMDARs) are Ca2+-permeable glutamate-gated ion channels whose physiological properties in neurons are modulated by protein kinase C (PKC). The present study was undertaken to determine the role in PKC-induced potentiation of the NR1 and NR2A C-terminal tails, which serve as targets of PKC phosphorylation [Tingley, W. G., Ehlers, M. D., Kameyama, K., Doherty, C., Ptak, J. B., Riley, C. T. & Huganir, R. L. (1997) J. Biol. Chem. 272, 5157–5166]. Serine residue 890 in the C1 cassette is a primary target of PKC phosphorylation and a critical residue in receptor clustering at the membrane. We report herein that the presence of the C1 cassette reduces PKC potentiation and that mutation of Ser-890 significantly restores PKC potentiation. Splicing out or deletion of other C-terminal cassettes singly or in combination had little or no effect on PKC potentiation. Moreover, experiments involving truncation mutants reveal the unexpected finding that NMDARs assembled from subunits lacking all known sites of PKC phosphorylation can show PKC potentiation. These results indicate that PKC-induced potentiation of NMDAR activity does not occur by direct phosphorylation of the receptor protein but rather of associated targeting, anchoring, or signaling protein(s). PKC potentiation of NMDAR function is likely to be an important mode of NMDAR regulation in vivo and may play a role in NMDA-dependent long-term potentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorophyllase (Chlase) is the first enzyme involved in chlorophyll (Chl) degradation and catalyzes the hydrolysis of ester bond to yield chlorophyllide and phytol. In the present study, we isolated the Chlase cDNA. We synthesized degenerate oligo DNA probes based on the internal amino acid sequences of purified Chlase from Chenopodium album, screened the C. album cDNA library, and cloned a cDNA (CaCLH, C. album chlorophyll-chlorophyllido hydrolase). The deduced amino acid sequence (347 aa residues) had a lipase motif overlapping with an ATP/GTP-binding motif (P-loop). CaCLH possibly was localized in the extraplastidic part of the cell, because a putative signal sequence for endoplasmic reticulum is at the N terminus. The amino acid sequence shared 37% identity with a function-unknown gene whose mRNA is inducible by coronatine and methyl jasmonate (MeJA) in Arabidopsis thaliana (AtCLH1). We expressed the gene products of AtCLH1 and of CaCLH in Escherichia coli, and they similarly exhibited Chlase activity. Moreover, we isolated another full-length cDNA based on an Arabidopsis genomic fragment and expressed it in E. coli, demonstrating the presence of the second Arabidopsis CLH gene (AtCLH2). No typical feature of signal sequence was identified in AtCLH1, whereas AtCLH2 had a typical signal sequence for chloroplast. AtCLH1 mRNA was induced rapidly by a treatment of MeJA, which is known to promote senescence and Chl degradation in plants, and a high mRNA level was maintained up to 9 h. AtCLH2, however, did not respond to MeJA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-methyl-d-aspartate receptor (NMDAR) activation has been implicated in forms of synaptic plasticity involving long-term changes in neuronal structure, function, or protein expression. Transcriptional alterations have been correlated with NMDAR-mediated synaptic plasticity, but the problem of rapidly targeting new proteins to particular synapses is unsolved. One potential solution is synapse-specific protein translation, which is suggested by dendritic localization of numerous transcripts and subsynaptic polyribosomes. We report here a mechanism by which NMDAR activation at synapses may control this protein synthetic machinery. In intact tadpole tecta, NMDAR activation leads to phosphorylation of a subset of proteins, one of which we now identify as the eukaryotic translation elongation factor 2 (eEF2). Phosphorylation of eEF2 halts protein synthesis and may prepare cells to translate a new set of mRNAs. We show that NMDAR activation-induced eEF2 phosphorylation is widespread in tadpole tecta. In contrast, in adult tecta, where synaptic plasticity is reduced, this phosphorylation is restricted to short dendritic regions that process binocular information. Biochemical and anatomical evidence shows that this NMDAR activation-induced eEF2 phosphorylation is localized to subsynaptic sites. Moreover, eEF2 phosphorylation is induced by visual stimulation, and NMDAR blockade before stimulation eliminates this effect. Thus, NMDAR activation, which is known to mediate synaptic changes in the developing frog, could produce local postsynaptic alterations in protein synthesis by inducing eEF2 phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signal transduction pathway underlying the cAMP-dependent modulation of rat striatal N-methyl-d-aspartate (NMDA) responses was investigated by using the two-electrode voltage-clamp technique. In oocytes injected with rat striatal poly(A)+ mRNA, activation of cAMP-dependent protein kinase (PKA) by forskolin potentiated NMDA responses. Inhibition of protein phosphatase 1 (PP1) and/or protein phosphatase 2A (PP2A) by the specific inhibitor calyculin A occluded the PKA-mediated potentiation of striatal NMDA responses, suggesting that the PKA effect was mediated by inhibition of a protein phosphatase. Coinjection of oocytes with striatal mRNA and antisense oligodeoxynucleotides directed against the protein phosphatase inhibitor DARPP-32 dramatically reduced the PKA enhancement of NMDA responses. NMDA responses recorded from oocytes injected with rat hippocampal poly(A)+ mRNA were not affected by stimulation of PKA. When oocytes were coinjected with rat hippocampal poly(A)+ mRNA plus complementary RNA coding for DARPP-32, NMDA responses were potentiated after stimulation of PKA. The results provide evidence that DARPP-32, which is enriched in the striatum, may participate in the signaling between the two major afferent striatal pathways, the glutamatergic and the dopaminergic projections, by the cAMP-dependent regulation of striatal NMDA currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of cholesterol for endocytosis has been investigated in HEp-2 and other cell lines by using methyl-β-cyclodextrin (MβCD) to selectively extract cholesterol from the plasma membrane. MβCD treatment strongly inhibited endocytosis of transferrin and EGF, whereas endocytosis of ricin was less affected. The inhibition of transferrin endocytosis was completely reversible. On removal of MβCD it was restored by continued incubation of the cells even in serum-free medium. The recovery in serum-free medium was inhibited by addition of lovastatin, which prevents cholesterol synthesis, but endocytosis recovered when a water-soluble form of cholesterol was added together with lovastatin. Electron microscopical studies of MβCD-treated HEp-2 cells revealed that typical invaginated caveolae were no longer present. Moreover, the invagination of clathrin-coated pits was strongly inhibited, resulting in accumulation of shallow coated pits. Quantitative immunogold labeling showed that transferrin receptors were concentrated in coated pits to the same degree (approximately sevenfold) after MβCD treatment as in control cells. Our results therefore indicate that although clathrin-independent (and caveolae-independent) endocytosis still operates after removal of cholesterol, cholesterol is essential for the formation of clathrin-coated endocytic vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the yeast, Saccharomyces cerevisiae, oligosaccharyl transferase (OT), which catalyzes the transfer of dolichol-linked oligosaccharide chains to nascent polypeptides in the endoplasmic reticulum, consists of nine nonidentical membrane protein subunits. Genetic and biochemical evidence indicated these nine proteins exist in three subcomplexes. Three of the OT subunits (Ost4p, Ost3p, and Stt3p) have been proposed to exist in one subcomplex. To investigate the interaction of these three membrane proteins, initially we carried out a mutational analysis of Ost4p, which is an extraordinarily small membrane protein containing only 36 amino acid residues. This analysis indicated that when single amino acid residues in a region close to the luminal face of the putative transmembrane domain of Ost4p were changed into an ionizable amino acid such as Lys or Asp, growth at 37°C and OT activity measured in vitro were impaired. In addition, using immunoprecipitation techniques and Western blot analysis, we found that with these mutations the interaction between Ost4p, Ost3p, and Stt3p was disrupted. Introduction of Lys or Asp residues at other positions in the putative transmembrane domain or at the N or C terminus of Ost4p had no effect on disrupting subunit interactions or impairing the activity of OT. These findings suggest that a localized region of the putative transmembrane domain of Ost4p mediates in stabilization of the interaction with the two other OT subunits (Ost3p and Stt3p) in a subcomplex in the endoplasmic reticulum membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory filial imprinting in the domestic chicken is accompanied by a dramatic loss of spine synapses in two higher associative forebrain areas, the mediorostral neostriatum/hyperstriatum ventrale (MNH) and the dorsocaudal neostriatum (Ndc). The cellular mechanisms that underlie this learning-induced synaptic reorganization are unclear. We found that local pharmacological blockade of N-methyl-d-aspartate (NMDA) receptors in the MNH, a manipulation that has been shown previously to impair auditory imprinting, suppresses the learning-induced spine reduction in this region. Chicks treated with the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) during the behavioral training for imprinting (postnatal day 0–2) displayed similar spine frequencies at postnatal day 7 as naive control animals, which, in both groups, were significantly higher than in imprinted animals. Because the average dendritic length did not differ between the experimental groups, the reduced spine frequency can be interpreted as a reduction of the total number of spine synapses per neuron. In the Ndc, which is reciprocally connected with the MNH and not directly influenced by the injected drug, learning-induced spine elimination was partly suppressed. Spine frequencies of the APV-treated, behaviorally trained but nonimprinted animals were higher than in the imprinted animals but lower than in the naive animals. These results provide evidence that NMDA receptor activation is required for the learning-induced selective reduction of spine synapses, which may serve as a mechanism of information storage specific for juvenile emotional learning events.