18 resultados para Max L Merr


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A highly purified preparation of uridine 5′-diphosphate (UDP)-glucose (Glc) dehydrogenase (DH; EC 1.1.1.22) has been characterized from soybean (Glycine max L.) nodules. The enzyme had native and subunit molecular masses of approximately 272 and 50 kD, respectively. UDP-Glc DH displayed typical hyperbolic substrate kinetics and had Km values for UDP-Glc and NAD+ of 0.05 and 0.12 mm, respectively. Thymidine 5′-diphosphate-Glc and UDP-galactose could replace UDP-Glc as the sugar nucleotide substrate to some extent, but the enzyme had no activity with NADP+. Soybean nodule UDP-Glc DH was labile in the absence of NAD+ and was inhibited by a heat-stable, low-molecular-mass solute in crude extracts of soybean nodules. UDP-Glc DH was also isolated from developing soybean seeds and shoots of 5-d-old wheat and canola seedlings and was shown to have similar affinities for UDP-Glc and NAD+ as those of the soybean nodule enzyme. UDP-Glc DH from all of these sources was most active in young, rapidly growing tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe Mxi2, a human protein that interacts with Max protein, the heterodimeric partner of the Myc oncoprotein. Mxi2 encodes a 297-residue protein whose sequence indicates that it is related to extracellular signal-regulated kinases (ERK protein kinases). Mxi2 in yeast interacts with Max and with the C terminus of c-Myc. Mxi2 phosphorylates Max both in vitro and in vivo. The Mxi2 putative substrate recognition region has sequence similarity to the helix-loop-helix region in Max and c-Myc, suggesting that substrate recognition might be mediated via this motif. Phosphorylation by Mxi2 may affect the ability of Max to oligomerize with itself and its partners, bind DNA, or regulate gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The myc gene family encodes a group of transcription factors that regulate cell proliferation and differentiation. These genes are widely studied because of their importance as proto-oncogenes. Phylogenetic analyses are described here for 45 Myc protein sequences representing c-, N-, L-, S-, and B-myc genes. A gene duplication early in vertebrate evolution produced the c-myc lineage and another lineage that later gave rise to the N- and L-myc lineages by another gene duplication. Evolutionary divergence in the myc gene family corresponds closely to the known branching order of the major vertebrate groups. The patterns of sequence evolution are described for five separate highly conserved regions, and these analyses show that differential rates of sequence divergence (= mosaic evolution) have occurred among conserved motifs. Further, the closely related dimerization partner protein Max exhibits significantly less sequence variability than Myc. It is suggested that the reduced variability in max stems from natural selection acting to preserve dimerization capability with products of myc and related genes.