20 resultados para Mannose binding lectin
Resumo:
The core proteins of large chondroitin sulfate proteoglycans contain a C-type lectin domain. The lectin domain of one of these proteoglycans, versican, was expressed as a recombinant 15-kDa protein and shown to bind to insolubilized fucose and GlcNAc. The lectin domain showed strong binding in a gel blotting assay to a glycoprotein doublet in rat brain extracts. The binding was calcium dependent and abolished by chemical deglycosylation treatment of the ligand glycoprotein. The versican-binding glycoprotein was identified as the cell adhesion protein tenascin-R, and versican and tenascin-R were both found to be localized in the granular layer of rat cerebellum. These results show that the versican lectin domain is a binding domain with a highly targeted specificity. It may allow versican to assemble complexes containing proteoglycan, an adhesion protein, and hyaluronan.
Resumo:
We cloned and sequenced the 8767-bp full-length cDNA for the chicken cation-independent mannose-6-phosphate receptor (CI-MPR), of interest because, unlike its mammalian homologs, it does not bind insulin-like growth factor II (IGF-II). The cDNA encodes a protein of 2470 aa that includes a putative signal sequence, an extracytoplasmic domain consisting of 15 homologous repeat sequences, a 23-residue transmembrane sequence, and a 161-residue cytoplasmic sequence. Overall, it shows 60% sequence identity with human and bovine CI-MPR homologs, and all but two of 122 cysteine residues are conserved. However, it shows much less homology in the N-terminal signal sequence, in repeat 11, which is proposed to contain the IGF-II-binding site in mammalian CI-MPR homologs, and in the 14-aa residue segment in the cytoplasmic sequence that has been proposed to mediate G-protein-coupled signal transduction in response to IGF-II binding by the human CI-MPR. Transient expression in COS-7 cells produced a functional CI-MPR which exhibited mannose-6-phosphate-inhibitable binding and mediated endocytosis of recombinant human beta-glucuronidase. Expression of the functional chicken CI-MPR in mice lacking the mammalian CI-MPR should clarify the controversy over the physiological role of the IGF-II-binding site in mammalian CI-MPR homologs.
Resumo:
Secretion of inflammatory mediators by rat mast cells (line RBL-2H3) was earlier shown to be inhibited upon clustering a membrane glycoprotein by monoclonal antibody G63. This glycoprotein, named mast cell function-associated antigen (MAFA), was also shown to interfere with the coupling cascade of the type 1 Fc epsilon receptor upstream to phospholipase C gamma 1 activation by protein-tyrosine kinases. Here we report that the MAFA is expressed as both a monomer and a homodimer. Expression cloning of its cDNA shows that it contains a single open reading frame, encoding a 188-amino acid-long type II integral membrane protein. The 114 C-terminal amino acids display sequence homology with the carbohydrate-binding domain of calcium-dependent animal lectins, many of which have immunological functions. The cytoplasmic tail of MAFA contains a YXXL (YSTL) motif, which is conserved among related C-type lectins and is an essential element in the immunoreceptor tyrosine-based activation motifs. Finally, changes in the MAFA tyrosyl- and seryl-phosphorylation levels are observed in response to monoclonal antibody G63 binding, antigenic stimulation, and a combination of both treatments.
Resumo:
We report a carbohydrate-dependent supramolecular architecture in the extracellular giant hemoglobin (Hb) from the marine worm Perinereis aibuhitensis; we call this architectural mechanism carbohydrate gluing. This study is an extension of our accidental discovery of deterioration in the form of the Hb caused by a high concentration of glucose. The giant Hbs of annelids are natural supramolecules consisting of about 200 polypeptide chains that associate to form a double-layered hexagonal structure. This Hb has 0.5% (wt) carbohydrates, including mannose, xylose, fucose, galactose, glucose, N-acetylglucosamine (GlcNAc), and N-acetylgalactosamine (GalNAc). Using carbohydrate-staining assays, in conjunction with two-dimensional polyacrylamide gel electrophoresis, we found that two types of linker chains (L1 and L2; the nomenclature of the Hb subunits followed that for another marine worm, Tylorrhynchus heterochaetus) contained carbohydrates with both GlcNAc and GalNAc. Furthermore, two types of globins (a and A) have only GlcNAc-containing carbohydrates, whereas the other types of globins (b and B) had no carbohydrates. Monosaccharides including mannose, fucose, glucose, galactose, GlcNAc, and GalNAc reversibly dissociated the intact form of the Hb, but the removal of carbohydrate with N-glycanase resulted in irreversible dissociation. These results show that carbohydrate acts noncovalently to glue together the components to yield the complete quaternary supramolecular structure of the giant Hb. We suggest that this carbohydrate gluing may be mediated through lectin-like carbohydrate-binding by the associated structural chains ("linkers").
Resumo:
Envelope glycoproteins of varicella zoster virus (VZV) contain mannose 6-phosphate (Man6P) residues. We now report that Man6P competitively and selectively inhibits infection of cells in vitro by cell-free VZV; furthermore, dephosphorylation of VZV by exposure to alkaline phosphatase rapidly destroys infectivity. Cells are also protected from VZV in a concentration-dependent manner by heparin (ED50 = 0.23 micrograms/ml; 95% confidence limits = 0.16-0.26 microgram/ml) but not by chondroitin sulfate. Both heparin and Man6P are protective only when present about the time of inoculation. Heparin but not Man6P interferes with the attachment of VZV to cell surfaces; moreover, VZV binds to heparin-affinity columns. These data are compatible with a working hypothesis, whereby VZV attaches to cell surfaces by binding to a heparin sulfate proteoglycan. This binding stabilizes VZV, making possible a low-affinity interaction with another Man6P-dependent receptor, which is necessary for viral entry.