20 resultados para Magnetic Resonance imaging(MRI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-polarized gases (3He and 129Xe) are currently being used in magnetic resonance imaging as strong signal sources that can be safely introduced into the lung. Recently, researchers have been investigating other tissues using 129Xe. These studies use xenon dissolved in a carrier such as lipid vesicles or blood. Since helium is much less soluble than xenon in these materials, 3He has been used exclusively for imaging air spaces. However, considering that the signal of 3He is more than 10 times greater than that of 129Xe for presently attainable polarization levels, this work has focused on generating a method to introduce 3He into the vascular system. We addressed the low solubility issue by producing suspensions of 3He microbubbles. Here, we provide the first vascular images obtained with laser-polarized 3He. The potential increase in signal and absence of background should allow this technique to produce high-resolution angiographic images. In addition, quantitative measurements of blood flow velocity and tissue perfusion will be feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gadolinium(III) texaphyrin (Gd-tex2+) is representative of a new class of radiation sensitizers detectable by magnetic resonance imaging (MRI). This porphyrin-like complex has a high electron affinity [E1/2 (red.) approximately = -0.08 V versus normal hydrogen electrode] and forms a long-lived pi-radical cation upon exposure to hydrated electrons, reducing ketyl radicals, or superoxide ions. Consistent with these chemical findings, Gd-tex2+ was found to be an efficient radiation sensitizer in studies carried out with HT29 cells in in vitro as well as in in vivo single and multifraction irradiation studies with a murine mammary carcinoma model. Selective localization of Gd-tex2+ in tumors was confirmed by MRI scanning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of optical pumping with laser light it is possible to enhance the nuclear spin polarization of gaseous xenon by four to five orders of magnitude. The enhanced polarization has allowed advances in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI), including polarization transfer to molecules and imaging of lungs and other void spaces. A critical issue for such applications is the delivery of xenon to the sample while maintaining the polarization. Described herein is an efficient method for the introduction of laser-polarized xenon into systems of biological and medical interest for the purpose of obtaining highly enhanced NMR/MRI signals. Using this method, we have made the first observation of the time-resolved process of xenon penetrating the red blood cells in fresh human blood—the xenon residence time constant in the red blood cells was measured to be 20.4 ± 2 ms. The potential of certain biologically compatible solvents for delivery of laser-polarized xenon to tissues for NMR/MRI is discussed in light of their respective relaxation and partitioning properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance microscopy (MRM) theoretically provides the spatial resolution and signal-to-noise ratio needed to resolve neuritic plaques, the neuropathological hallmark of Alzheimer’s disease (AD). Two previously unexplored MR contrast parameters, T2* and diffusion, are tested for plaque-specific contrast to noise. Autopsy specimens from nondemented controls (n = 3) and patients with AD (n = 5) were used. Three-dimensional T2* and diffusion MR images with voxel sizes ranging from 3 × 10−3 mm3 to 5.9 × 10−5 mm3 were acquired. After imaging, specimens were cut and stained with a microwave king silver stain to demonstrate neuritic plaques. From controls, the alveus, fimbria, pyramidal cell layer, hippocampal sulcus, and granule cell layer were detected by either T2* or diffusion contrast. These structures were used as landmarks when correlating MRMs with histological sections. At a voxel resolution of 5.9 × 10−5 mm3, neuritic plaques could be detected by T2*. The neuritic plaques emerged as black, spherical elements on T2* MRMs and could be distinguished from vessels only in cross-section when presented in three dimension. Here we provide MR images of neuritic plaques in vitro. The MRM results reported provide a new direction for applying this technology in vivo. Clearly, the ability to detect and follow the early progression of amyloid-positive brain lesions will greatly aid and simplify the many possibilities to intervene pharmacologically in AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional MRI revealed differences between children with Attention Deficit Hyperactivity Disorder (ADHD) and healthy controls in their frontal–striatal function and its modulation by methylphenidate during response inhibition. Children performed two go/no-go tasks with and without drug. ADHD children had impaired inhibitory control on both tasks. Off-drug frontal–striatal activation during response inhibition differed between ADHD and healthy children: ADHD children had greater frontal activation on one task and reduced striatal activation on the other task. Drug effects differed between ADHD and healthy children: The drug improved response inhibition in both groups on one task and only in ADHD children on the other task. The drug modulated brain activation during response inhibition on only one task: It increased frontal activation to an equal extent in both groups. In contrast, it increased striatal activation in ADHD children but reduced it in healthy children. These results suggest that ADHD is characterized by atypical frontal–striatal function and that methylphenidate affects striatal activation differently in ADHD than in healthy children.