57 resultados para MONOPHOSPHATE KINASE INHIBITORS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

5'-Deoxy-5'-methylthioadenosine phosphorylase (methylthioadeno-sine: ortho-phosphate methylthioribosyltransferase, EC 24.2.28; MTAP) plays a role in purine and polyamine metabolism and in the regulation of transmethylation reactions. MTAP is abundant in normal cells but is deficient in many cancers. Recently, the genes for the cyclin-dependent kinase inhibitors p16 and p15 have been localized to the short arm of human chromosome 9 at band p21, where MTAP and interferon alpha genes (IFNA) also map. Homozygous deletions of p16 and p15 are frequent malignant cell lines. However, the order of the MTAP, p16, p15, and IFNA genes on chromosome 9p is uncertain, and the molecular basis for MTAP deficiency in cancer is unknown. We have cloned the MTAP gene, and have constructed a topologic map of the 9p21 region using yeast artificial chromosome clones, pulse-field gel electrophoresis, and sequence-tagged-site PCR. The MTAP gene consists of eight exons and seven introns. Of 23 malignant cell lines deficient in MTAP protein, all but one had complete or partial deletions. Partial or total deletions of the MTAP gene were found in primary T-cell acute lymphoblastic leukemias (T-ALL). A deletion breakpoint of partial deletions found in cell lines and primary T-ALL was in intron 4. Starting from the centromeric end, the gene order on chromosome 9p2l is p15, p16, MTAP, IFNA, and interferon beta gene (IFNB). These results indicate that MTAP deficiency in cancer is primarily due to codeletion of the MTAP and p16 genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent evidence suggests that slow anion channels in guard cells need to be activated to trigger stomatal closing and efficiently inactivated during stomatal opening. The patch-clamp technique was employed here to determine mechanisms that produce strong regulation of slow anion channels in guard cells. MgATP in guard cells, serving as a donor for phosphorylation, leads to strong activation of slow anion channels. Slow anion-channel activity was almost completely abolished by removal of cytosolic ATP or by the kinase inhibitors K-252a and H7. Nonhydrolyzable ATP, GTP, and guanosine 5'-[gamma-thio]triphosphate did not replace the ATP requirement for anion-channel activation. In addition, down-regulation of slow anion channels by ATP removal was inhibited by the phosphatase inhibitor okadaic acid. Stomatal closures in leaves induced by the plant hormone abscisic acid (ABA) and malate were abolished by kinase inhibitors and/or enhanced by okadaic acid. These data suggest that ABA signal transduction may proceed by activation of protein kinases and inhibition of an okadaic acid-sensitive phosphatase. This modulation of ABA-induced stomatal closing correlated to the large dynamic range for up- and down-regulation of slow anion channels by opposing phosphorylation and dephosphorylation events in guard cells. The presented opposing regulation by kinase and phosphatase modulators could provide important mechanisms for signal transduction by ABA and other stimuli during stomatal movements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxidative burst is likely the most rapid defense response mounted by a plant under pathogen attack, and the generated oxidant species may be essential to several subsequent defense responses. In our effort to characterize the signal-transduction pathways leading to rapid H2O2/O2- biosynthesis, we have examined the role of protein phosphorylation in this resistance mechanism. K-252a and staurosporine, two protein-kinase inhibitors, were found to block the oxidative burst in a concentration-dependent manner. When added during H2O2 generation, the burst was observed to rapidly terminate, suggesting that continuous phosphorylation was essential for its maintenance. Importantly, phosphatase inhibitors (calyculin A and okadaic acid) were found to induce the oxidative burst in the absence of any additional stimulus. This may suggest that certain kinases required for the burst are constitutively active and that stabilization of the phosphorylated forms of their substrates is all that is required for burst activity. In autoradiographs of elicited and unstimulated cells equilibrated with 32PO4(3-), several phosphorylated polypeptide bands were revealed that could represent proteins essential for the burst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structures of Escherichia coli thymidylate kinase (TmpK) in complex with P1-(5′-adenosyl)-P5-(5′-thymidyl)pentaphosphate and P1-(5′-adenosyl)P5-[5′-(3′-azido-3′-deoxythymidine)] pentaphosphate have been solved to 2.0-Å and 2.2-Å resolution, respectively. The overall structure of the bacterial TmpK is very similar to that of yeast TmpK. In contrast to the human and yeast TmpKs, which phosphorylate 3′-azido-3′-deoxythymidine 5′-monophosphate (AZT-MP) at a 200-fold reduced turnover number (kcat) in comparison to the physiological substrate dTMP, reduction of kcat is only 2-fold for the bacterial enzyme. The different kinetic properties toward AZT-MP between the eukaryotic TmpKs and E. coli TmpK can be rationalized by the different ways in which these enzymes stabilize the presumed transition state and the different manner in which a carboxylic acid side chain in the P loop interacts with the deoxyribose of the monophosphate. Yeast TmpK interacts with the 3′-hydroxyl of dTMP through Asp-14 of the P loop in a bidentate manner: binding of AZT-MP results in a shift of the P loop to accommodate the larger substituent. In E. coli TmpK, the corresponding residue is Glu-12, and it interacts in a side-on fashion with the 3′-hydroxyl of dTMP. This different mode of interaction between the P loop carboxylic acid with the 3′ substituent of the monophosphate deoxyribose allows the accommodation of an azido group in the case of the E. coli enzyme without significant P loop movement. In addition, although the yeast enzyme uses Arg-15 (a glycine in E. coli) to stabilize the transition state, E. coli seems to use Arg-153 from a region termed Lid instead. Thus, the binding of AZT-MP to the yeast TmpK results in the shift of a catalytic residue, which is not the case for the bacterial kinase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In neutrophils activated to secrete with formyl-methionyl-leucyl-phenylalanine, intermediate filaments are phosphorylated transiently by cyclic guanosine monophosphate (cGMP)-dependent protein kinase (G-kinase). cGMP regulation of vimentin organization was investigated. During granule secretion, cGMP levels were elevated and intermediate filaments were transiently assembled at the pericortex to areas devoid of granules and microfilaments. Microtubule and microfilament inhibitors affected intermediate filament organization, granule secretion, and cGMP levels. Cytochalasin D and nocodazole caused intermediate filaments to assemble at the nucleus, rather than at the pericortex. cGMP levels were elevated in neutrophils by both inhibitors; however, with cytochalasin D, cGMP was elevated earlier and granule secretion was excessive. Nocodazole did not affect normal cGMP elevations, but specific granule secretion was delayed. LY83583, a guanylyl cyclase antagonist, inhibited granule secretion and intermediate filament organization, but not microtubule or microfilament organization. Intermediate filament assembly at the pericortex and secretion were partially restored by 8-bromo-cGMP in LY83583-treated neutrophils, suggesting that cGMP regulates these functions. G-kinase directly induced intermediate filament assembly in situ, and protein phosphatase 1 disassembled filaments. However, in intact cells stimulated with formyl-methionyl-leucyl-phenylalanine, intermediate filament assembly is focal and transient, suggesting that vimentin phosphorylation is compartmentalized. We propose that, in addition to changes in microfilament and microtubule organization, granule secretion is also accompanied by changes in intermediate filament organization, and that cGMP regulates vimentin filament organization via activation of G-kinase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Treatment of quiescent Swiss 3T3 fibroblasts with serum, or with the phosphatase inhibitors okadaic acid and vanadate, induced a 2- to 11-fold activation of the serine/ threonine RAC protein kinase (RAC-PK). Kinase activation was accompanied by decreased mobility of RAC-PK on SDS/PAGE such that three electrophoretic species (a to c) of the kinase were detected by immunoblot analysis, indicative of differentially phosphorylated forms. Addition of vanadate to arrested cells increased the RAC-PK phosphorylation level 3-to 4-fold. Unstimulated RAC-PK was phosphorylated predominantly on serine, whereas the activated kinase was phosphorylated on both serine and threonine residues. Treatment of RAC-PK in vitro with protein phosphatase 2A led to kinase inactivation and an increase in electrophoretic mobility. Deletion of the N-terminal region containing the pleckstrin homology domain did not affect RAC-PK activation by okadaic acid, but it reduced vanadate-stimulated activity and also blocked the serum-induced activation. Deletion of the serine/threonine rich C-terminal region impaired both RAC-PKalpha basal and vanadate-stimulated activity. Studies using a kinase-deficient mutant indicated that autophosphorylation is not involved in RAC-PKalpha activation. Stimulation of RAC-PK activity and electrophoretic mobility changes induced by serum were sensitive to wortmannin. Taken together the results suggest that RAC-PK is a component of a signaling pathway regulated by phosphatidylinositol (PI) 3-kinase, whose action is required for RAC-PK activation by phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of cells to protein tyrosine phosphatase (PTP) inhibitors causes an increase in the phosphotyrosine content of many cellular proteins. However, the level at which the primary signaling event is affected is still unclear. We show that Jaks are activated by tyrosine phosphorylation in cells that are briefly exposed to the PTP inhibitor pervanadate (PV), resulting in tyrosine phosphorylation and functional activation of Stat6 (in addition to other Stats). Mutant cell lines that lack Jak1 activity fail to support PV-mediated [or interleukin 4 (IL-4)-dependent] activation of Stat6 but can be rescued by complementation with functional Jak1. The docking sites for both Jak1 and Stat6 reside in the cytoplasmic domain of the IL-4 receptor α-chain (IL-4Rα). The glioblastoma-derived cell lines T98G, GRE, and M007, which do not express the IL-4Rα chain, fail to support Stat6 activation in response to either IL-4 or PV. Complementation of T98G cells with the IL-4Rα restores both PV-mediated and IL-4-dependent Stat6 activation. Murine L929 cells, which do not express the γ common chain of the IL-4 receptor, support PV-mediated but not IL-4-dependent Stat6 activation. Thus, Stat6 activation by PV is an IL-4Rα-mediated, Jak1-dependent event that is independent of receptor dimerization. We propose that receptor-associated constitutive PTP activity functions to down-regulate persistent, receptor-linked kinase activity. Inhibition or deletion of PTP activity results in constitutive activation of cytokine signaling pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent epidemiological studies indicate beneficial effects of moderate ethanol consumption in ischemic heart disease. Most studies, however, focus on the effect of long-term consumption of ethanol. In this study, we determined whether brief exposure to ethanol immediately before ischemia also produces cardioprotection. In addition, because protein kinase C (PKC) has been shown to mediate protection of the heart from ischemia, we determined the role of specific PKC isozymes in ethanol-induced protection. We demonstrated that (i) brief exposure of isolated adult rat cardiac myocytes to 10–50 mM ethanol protected against damage induced by prolonged ischemia; (ii) an isozyme-selective ɛPKC inhibitor developed in our laboratory inhibited the cardioprotective effect of acute ethanol exposure; (iii) protection of isolated intact adult rat heart also occurred after incubation with 10 mM ethanol 20 min before global ischemia; and (iv) ethanol-induced cardioprotection depended on PKC activation because it was blocked by chelerythrine and GF109203X, two PKC inhibitors. Consumption of 1–2 alcoholic beverages in humans leads to blood alcohol levels of ≈10 mM. Therefore, our work demonstrates that exposure to physiologically attainable ethanol levels minutes before ischemia provides cardioprotection that is mediated by direct activation of ɛPKC in the cardiac myocytes. The potential clinical implications of our findings are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported the presence of a novel variant (β-T594M) of the amiloride-sensitive Na+ channel (ASSC) in which the threonine residue at position 594 in the β-subunit has been replaced by a methionine residue. Electrophysiological studies of the ASSC on Epstein–Barr virus (EBV)-transformed lymphocytes carrying this variant showed that the 8-(4-chlorophenylthio) adenosine 3′:5′-cyclic monophosphate (8cpt-cAMP)-induced responses were enhanced when compared to wild-type EBV-transformed lymphocytes. Furthermore, in wild-type EBV-transformed cells, the 8cpt-cAMP-induced response was totally blocked by the phorbol ester, phorbol 12-myristate 13-acetate (PMA). This inhibitory effect of PMA was blocked by a protein kinase C inhibitor, chelerythrine. We now have identified individuals who are homozygous for this variant, and showed that PMA had no effect on the 8cpt-cAMP-induced responses in the EBV-transformed lymphocytes from such individuals. Cells heterozygous for this variant showed mixed responses to PMA, with the majority of cells partially inhibited by PMA. Our results demonstrate that an alteration in a single amino acid residue in the β-subunit of the ASSC can lead to a total loss of inhibition to PMA, and establish the β-subunit as having an important role in conferring a regulatory effect on the ASSC of lymphocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Tec family of tyrosine kinases are involved in signals emanating from cytokine receptors, antigen receptors, and other lymphoid cell surface receptors. One family member, ITK (inducible T cell kinase), is involved in T cell activation and can be activated by the T cell receptor and the CD28 cell surface receptor. This stimulation of tyrosine phosphorylation and activation of ITK can be mimicked by the Src family kinase Lck. We have explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that coexpression of ITK and Src results in increased membrane association, tyrosine phosphorylation and activation of ITK, which could be blocked by inhibitors of the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase) as well as overexpression of the p85 subunit of PI 3-kinase. Removal of the Pleckstrin homology domain (PH) of ITK resulted in a kinase that could no longer be induced to localize to the membrane or be activated by Src. The PH of ITK was also able to bind inositol phosphates phosphorylated at the D3 position. Membrane targeting of ITK without the PH recovered its ability to be activated by Src. These results suggest that ITK can be activated by a combination of Src and PI 3-kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor, the L-type Ca2+ channel, and the KCa channel. We hypothesized that the targeted disruption of the gene for the ubiquitously expressed RIIα subunit would reveal those tissues and signaling events that require anchored PKA. RIIα knockout mice appear normal and healthy. In adult skeletal muscle, RIα protein levels increased to partially compensate for the loss of RIIα. Nonetheless, a reduction in both catalytic (C) subunit protein levels and total kinase activity was observed. Surprisingly, the anchored PKA-dependent potentiation of the L-type Ca2+ channel in RIIα knockout skeletal muscle was unchanged compared with wild type although it was more sensitive to inhibitors of PKA–AKAP interactions. The C subunit colocalized with the L-type Ca2+ channel in transverse tubules in wild-type skeletal muscle and retained this localization in knockout muscle. The RIα subunit was shown to bind AKAPs, although with a 500-fold lower affinity than the RIIα subunit. The potentiation of the L-type Ca2+ channel in RIIα knockout mouse skeletal muscle suggests that, despite a lower affinity for AKAP binding, RIα is capable of physiologically relevant anchoring interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cerebellar Purkinje neurons, γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission undergoes a long-lasting “rebound potentiation” after the activation of excitatory climbing fiber inputs. Rebound potentiation is triggered by the climbing-fiber-induced transient elevation of intracellular Ca2+ concentration and is expressed as a long-lasting increase of postsynaptic GABAA receptor sensitivity. Herein we show that inhibitors of the Ca2+/calmodulin-dependent protein kinase II (CaM-KII) signal transduction pathway effectively block the induction of rebound potentiation. These inhibitors have no effect on the once established rebound potentiation, on voltage-gated Ca2+ channel currents, or on the basal inhibitory transmission itself. Futhermore, a protein phosphatase inhibitor and the intracellularly applied CaM-KII markedly enhanced GABA-mediated currents in Purkinje neurons. Our results demonstrate that CaM-KII activation and the following phosphorylation are key steps for rebound potentiation.