18 resultados para MOLECULAR ION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of molecular genetics to introduce both a metal ion binding site and a nitroxide spin label into the same protein opens the use of paramagnetic metalnitroxyl interactions to estimate intramolecular distances in a wide variety of proteins. In this report, a His-Xaa3-His metal ion binding motif was introduced at the N terminus of the long interdomain helix of T4 lysozyme (Lys-65 --> His/Gln-69 --> His) of three mutants, each containing a single nitroxide-labeled cysteine residue at position 71, 76, or 80. The results show that Cu(II)-induced relaxation effects on the nitroxide can be quantitatively analyzed in terms of interspin distance in the range of 10-25 A using Redfield theory, as first suggested by Leigh [Leigh, J.S. (1970) J. Chem. Phys. 52, 2608-2612]. Of particular interest is the observation that distances can be determined both under rigid lattice conditions in frozen solution and in the presence of motion of the spins at room temperature under physiological conditions. The method should be particularly attractive for investigating structure in membrane proteins that are difficult to crystallize. In the accompanying paper, the technique is applied to a polytopic membrane protein, lactose permease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In molecular biology, the expression of fusion proteins is a very useful and well-established technique for the identification and one-step purification of gene products. Even a short fused sequence of five or six histidines enables proteins to bind to an immobilized metal ion chelate complex. By synthesis of a class of chelator lipids, we have transferred this approach to the concept of self-assembly. The specific interaction and lateral organization of a fluorescent fusion molecule containing a C-terminal oligohistidine sequence was studied by film balance techniques in combination with epifluorescence microscopy. Due to the phase behavior of the various lipid mixtures used, the chelator lipids can be laterally structured, generating two-dimensional arrays of histidine-tagged biomolecules. Because of the large variety of fusion proteins already available, this concept represents a powerful technique for orientation and organization of proteins at lipid interfaces with applications in biosensing, biofunctionalization of nanostructured interfaces, two-dimensional crystallization, and studies of lipid-anchored proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR). The cross-linked radioactive receptor peptide was isolated by reverse-phase HPLC after tryptic digestion of the labeled delta subunit. The sequence of this peptide, delta-(260-277), and the position of the label at Ala-268 were established by matrix-assisted laser-desorption-ionization mass spectrometry based on the molecular mass and on post-source decay fragment analysis. With the known dimensions of the AChR molecule, of the photolabel, and of alpha-neurotoxin, finding the cross-link at delta Ala-268 (located in the upper part of the channel-forming transmembrane helix M2) means that the center of the alpha-neurotoxin binding site is situated at least approximately 40 A from the extracellular surface of the AChR, proximal to the channel axis.