51 resultados para MIP-1-ALPHA


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The CC chemokines regulated on activation normal T expressed and secreted (RANTES) and monocyte chemotactic protein 3 (MCP-3), and the anaphylatoxin C5a, induce activation, degranulation, chemotaxis, and transendothelial migration of eosinophils. Adhesion assays on purified ligands showed differential regulation of beta 1 and beta 2 integrin avidity in eosinophils. Adhesiveness of VLA-4 (alpha 4 beta 1, CD29/CD49d) for vascular cell adhesion molecule 1 or fibronectin was rapidly increased but subsequently reduced by RANTES, MCP-3, or C5a. The deactivation of VLA-4 lead to cell detachment, whereas phorbol 12-myristate 13-acetate induced sustained activation of VLA-4. In contrast, chemoattractants stimulated a prolonged increase in the adhesiveness of Mac-1 (alpha M beta 2, CD11b/CD18) for intercellular adhesion molecule 1. Inhibition by pertussis toxin confirmed signaling via G protein-coupled receptors. Chemoattractants induced transient, while phorbol 12-myristate 13-acetate induced sustained actin polymerization. Disruption of actin filaments by cytochalasins inhibited increases in avidity of VLA-4 but not of Mac-1. Chemoattractants did not upregulate a Mn2+-inducible beta 1 neoepitope defined by the mAb 9EG7, but induced prolonged expression of a Mac-1 activation epitope recognized by the mAb CBRM1/5. This mAb inhibited chemoattractant-stimulated adhesion of eosinophils to intercellular adhesion molecule 1. Thus, regulation of VLA-4 was dependent on the actin cytoskeleton, whereas conformational changes appeared to be crucial for activation of Mac-1. To our knowledge, this is the first demonstration that physiological agonists, such as chemoattractants, can differentially regulate the avidity of a beta 1 and a beta 2 integrin expressed on the same leukocyte.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ceramide has been identified as a potential second messenger that may mediate cell differentiation and apoptosis after exposure to hormonal agonists such as 1 alpha, 25-dihydroxyvitamin D3, tumor necrosis factor alpha, or gamma-interferon. The secondary cellular events that follow ceramide generation remain undefined. We report that in NIH WT-3T3 cells, ceramide induces an enhancement of gene transcription of alpha B-crystallin, a small heat shock protein. The levels of alpha B-crystallin, as measured by Northern blot and immunoblot analyses, were increased by the addition of an exogenous short-chain ceramide, N-acetylsphingosine, or by increasing endogenous intracellular ceramide by inhibition of glucosylceramide synthase. Similar effects were not seen in the expression of the closely related gene, Hsp25. To ascertain whether ceramide-mediated gene transcription was a feature of the heat shock response, cell ceramide was measured in heat shocked cells and observed to be elevated 2-fold immediately upon the return of cells to 37 degrees C. Thus ceramide formed after heat shock treatment of 3T3 cells may mediate the transcription events associated with the cell stress response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic rejection, the most important cause of long-term graft failure, is thought to result from both alloantigen-dependent and -independent factors. To examine these influences, cytokine dynamics were assessed by semiquantitative competitive reverse transcriptase-PCR and by immunohistology in an established rat model of chronic rejection lf renal allografts. Isograft controls develop morphologic and immunohistologic changes that are similar to renal allograft changes, although quantitatively less intense and at a delayed speed; these are thought to occur secondary to antigen-independent events. Sequential cytokine expression was determined throughout the process. During an early reversible allograft rejection episode, both T-cell associated [interleukin (IL) 2, IL-2 receptor, IL-4, and interferon gamma] and macrophage (IL-1 alpha, tumor necrosis factor alpha, and IL-6) products were up-regulated despite transient immunosuppression. RANTES (regulated upon activation, normal T-cell expressed and secreted) peaked at 2 weeks; intercellular adhesion molecule (ICAM-1) was maximally expressed at 6 weeks. Macrophage products such as monocyte chemoattractant protein (MCP-1) increased dramatically (to 10 times), presaging intense peak macrophage infiltration at 16 weeks. In contrast, in isografts, ICAM-1 peaked at 24 weeks. MCP-1 was maximally expressed at 52 weeks, commensurate with a progressive increase in infiltrating macrophages. Cytokine expression in the spleen of allograft and isograft recipients was insignificant. We conclude that chronic rejection of kidney allografts in rats is predominantly a local macrophage-dependent event with intense up-regulation of macrophage products such as MCP-1, IL-6, and inducible nitric oxide synthase. The cytokine expression in isografts emphasizes the contribution of antigen-independent events. The dynamics of RANTES expression between early and late phases of chronic rejection suggest a key role in mediating the events of the chronic process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elucidating the relevant genomic changes mediating development and evolution of prostate cancer is paramount for effective diagnosis and therapy. A putative dominant-acting nude mouse prostatic carcinoma tumor-inducing gene, PTI-1, has been cloned that is expressed in patient-derived human prostatic carcinomas but not in benign prostatic hypertrophy or normal prostate tissue. PTI-1 was detected by cotransfecting human prostate carcinoma DNA into CREF-Trans 6 cells, inducing tumors in nude mice, and isolating genes displaying increased expression in tumor-derived cells by using differential RNA display (DD). Screening a human prostatic carcinoma (LNCaP) cDNA library with a 214-bp DNA fragment found by DD permitted the cloning of a full-length 2.0-kb PTI-1 cDNA. Sequence analysis indicates that PTI-1 is a gene containing a 630-bp 5' sequence and a 3' sequence homologous to a truncated and mutated form of human elongation factor 1 alpha. In vitro translation demonstrates that the PTI-1 cDNA encodes a predominant approximately 46-kDa protein. Probing Northern blots with a DNA fragment corresponding to the 5' region of PTI-1 identifies multiple PTI-1 transcripts in RNAs from human carcinoma cell lines derived from the prostate, lung, breast, and colon. In contrast, PTI-1 RNA is not detected in human melanoma, neuroblastoma, osteosarcoma, normal cerebellum, or glioblastoma multiforme cell lines. By using a pair of primers recognizing a 280-bp region within the 630-bp 5' PTI-1 sequence, reverse transcription-PCR detects PTI-1 expression in patient-derived prostate carcinomas but not in normal prostate or benign hypertrophic prostate tissue. In contrast, reverse transcription-PCR detects prostate-specific antigen expression in all of the prostate tissues. These results indicate that PTI-1 may be a member of a class of oncogenes that could affect protein translation and contribute to carcinoma development in human prostate and other tissues. The approaches used, rapid expression cloning with the CREF-Trans 6 system and the DD strategy, should prove widely applicable for identifying and cloning additional human oncogenes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypoxia-inducible factor 1 (HIF-1) is found in mammalian cells cultured under reduced O2 tension and is necessary for transcriptional activation mediated by the erythropoietin gene enhancer in hypoxic cells. We show that both HIF-1 subunits are basic-helix-loop-helix proteins containing a PAS domain, defined by its presence in the Drosophila Per and Sim proteins and in the mammalian ARNT and AHR proteins. HIF-1 alpha is most closely related to Sim. HIF-1 beta is a series of ARNT gene products, which can thus heterodimerize with either HIF-1 alpha or AHR. HIF-1 alpha and HIF-1 beta (ARNT) RNA and protein levels were induced in cells exposed to 1% O2 and decayed rapidly upon return of the cells to 20% O2, consistent with the role of HIF-1 as a mediator of transcriptional responses to hypoxia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammation is associated with production of cytokines and chemokines that recruit and activate inflammatory cells. Interleukin (IL) 12 produced by macrophages in response to various stimuli is a potent inducer of interferon (IFN) γ production. IFN-γ, in turn, markedly enhances IL-12 production. Although the immune response is typically self-limiting, the mechanisms involved are unclear. We demonstrate that IFN-γ inhibits production of chemokines (macrophage inflammatory proteins MIP-1α and MIP-1β). Furthermore, pre-exposure to tumor necrosis factor (TNF) inhibited IFN-γ priming for production of high levels of IL-12 by macrophages in vitro. Inhibition of IL-12 by TNF can be mediated by both IL-10-dependent and IL-10-independent mechanisms. To determine whether TNF inhibition of IFN-γ-induced IL-12 production contributed to the resolution of an inflammatory response in vivo, the response of TNF+/+ and TNF−/− mice injected with Corynebacterium parvum were compared. TNF−/− mice developed a delayed, but vigorous, inflammatory response leading to death, whereas TNF+/+ mice exhibited a prompt response that resolved. Serum IL-12 levels were elevated 3-fold in C. parvum-treated TNF−/− mice compared with TNF+/+ mice. Treatment with a neutralizing anti-IL-12 antibody led to resolution of the response to C. parvum in TNF−/− mice. We conclude that the role of TNF in limiting the extent and duration of inflammatory responses in vivo involves its capacity to regulate macrophage IL-12 production. IFN-γ inhibition of chemokine production and inhibition of IFN-γ-induced IL-12 production by TNF provide potential mechanisms by which these cytokines can exert anti-inflammatory/repair function(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural killer (NK) cells are inhibited from killing cellular targets by major histocompatibility complex (MHC) class I molecules. In the mouse, this can be mediated by the Ly-49A NK cell receptor that specifically binds the H-2Dd MHC class I molecule, then inhibits NK cell activity. Previous experiments have indicated that Ly-49A recognizes the alpha 1/alpha 2 domains of MHC class I and that no specific MHC-bound peptide appeared to be involved. We demonstrate here that alanine-substituted peptides, having only the minimal anchor motifs, stabilized H-2Dd expression and provided resistance to H-2Dd-transfected, transporter associated with processing (TAP)-deficient cells from lysis by Ly-49A+ NK cells. Peptide-induced resistance was blocked only by an mAb that binds a conformational determinant on H-2Dd. Moreover, stabilization of "empty" H-2Dd heavy chains by exogenous beta 2-microglobulin did not confer resistance. In contrast to data for MHC class I-restricted T cells that are specific for peptides displayed MHC molecules, these data indicate that NK cells are specific for a peptide-induced conformational determinant, independent of specific peptide. This fundamental distinction between NK cells and T cells further implies that NK cells are sensitive only to global changes in MHC class I conformation or expression, rather than to specific pathogen-encoded peptides. This is consistent with the "missing self" hypothesis, which postulates that NK cells survey tissues for normal expression of MHC class I.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poxviruses encode proteins that block the activity of cytokines. Here we show that the study of such virulence factors can contribute to our understanding of not only virus pathogenesis but also the physiological role of cytokines. Fever is a nonspecific response to infection that contributes to host defense. Several cytokines induce an elevation of body temperature when injected into animals, but in naturally occurring fever it has been difficult to show that any cytokine has a critical role. We describe the first example of the suppression of fever by a virus and the molecular mechanism leading to it. Several vaccinia virus strains including smallpox vaccines express soluble interleukin 1 (IL-1) receptors, which bind IL-1 beta but not IL-1 alpha. These viruses prevent the febrile response in infected mice, whereas strains that naturally or through genetic engineering lack the receptor induce fever. Repair of the defective IL-1 beta inhibitor in the smallpox vaccine Copenhagen, a more virulent virus than the widely used vaccine strains Wyeth and Lister, suppresses fever and attenuates the disease. The vaccinia-induced fever was inhibited with antibodies to IL-1 beta. These findings provide strong evidence that IL-1 beta, and not other cytokines, is the major endogenous pyrogen in a poxvirus infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catalytic RNA molecules, or ribozymes, have generated significant interest as potential therapeutic agents for controlling gene expression. Although ribozymes have been shown to work in vitro and in cellular assays, there are no reports that demonstrate the efficacy of synthetic, stabilized ribozymes delivered in vivo. We are currently utilizing the rabbit model of interleukin 1-induced arthritis to assess the localization, stability, and efficacy of exogenous antistromelysin hammerhead ribozymes. The matrix metalloproteinase stromelysin is believed to be a key mediator in arthritic diseases. It seems likely therefore that inhibiting stromelysin would be a valid therapeutic approach for arthritis. We found that following intraarticular administration ribozymes were taken up by cells in the synovial lining, were stable in the synovium, and reduced synovial interleukin 1 alpha-induced stromelysin mRNA. This effect was demonstrated with ribozymes containing various chemical modifications that impart nuclease resistance and that recognize several distinct sites on the message. Catalytically inactive ribozymes were ineffective, thus suggesting a cleavage-mediated mechanism of action. These results suggest that ribozymes may be useful in the treatment of arthritic diseases characterized by dysregulation of metalloproteinase expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nerve cells depend on specific interactions with glial cells for proper function. Myelinating glial cells are thought to associate with neuronal axons, in part, via the cell-surface adhesion protein, myelin-associated glycoprotein (MAG). MAG is also thought to be a major inhibitor of neurite outgrowth (axon regeneration) in the adult central nervous system. Primary structure and in vitro function place MAG in an immunoglobulin-related family of sialic acid-binding lactins. We report that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG. When major brain gangliosides were adsorbed as artificial membranes on plastic microwells, only GT1b and GD1a supported cell adhesion of MAG-transfected COS-1 cells. Furthermore, a quantitatively minor ganglioside expressed on cholinergic neurons, GQ1b alpha (also known as Chol-1 alpha-b), was much more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. Adhesion to either GT1b or GQ1b alpha was abolished by pretreatment of the adsorbed gangliosides with neuraminidase. On the basis of structure-function studies of 19 test glycosphingolipids, an alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. MAG-mediated adhesion to gangliosides was blocked by pretreatment of the MAG-transfected COS-1 cells with anti-MAG monoclonal antibody 513, which is known to inhibit oligodendrocyte-neuron binding. These data are consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

These studies were undertaken to investigate the therapeutic mechanism of saturated solutions of KI, used to treat infectious and inflammatory diseases. The addition of 12-50 mM KI to cultured human peripheral blood mononuclear cells resulted in 319-395 mosM final solute concentration and induced interleukin (IL)-8 synthesis. Maximal IL-8 production was seen when 40 mM salt was added (375 mosM) and was equal to IL-8 induced by endotoxin or IL-1 alpha. However, there was no induction of IL-1 alpha, IL-1 beta, or tumor necrosis factor to account for the synthesis of IL-8; the effect of KI was not due to contaminating endotoxins. Hyperosmolar NaCl also induced IL-8 and increased steady-state levels of IL-8 mRNA similar to those induced by IL-1 alpha. IL-8 gene expression was elevated for 96 hr in peripheral blood mononuclear cells incubated with hyperosmolar NaCl. In human THP-1 macrophagic cells, osmotic stimulation with KI, NaI, or NaCl also induced IL-8 production. IL-1 signal transduction includes the phosphorylation of the p38 mitogen-activated protein kinase that is observed following osmotic stress. Using specific blockade of this kinase, a dose-response inhibition of hyperosmolar NaCl-induced IL-8 synthesis was observed, similar to that in cells stimulated with IL-1. Thus, these studies suggest that IL-1 and osmotic shock utilize the same mitogen-activated protein kinase for signal transduction and IL-8 synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pleckstrin homology (PH) domains are found in many signaling molecules and are thought to be involved in specific intermolecular interactions. Their binding to several proteins and to membranes containing 1-alpha-phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has been reported. A region that includes the PH domain has also been implicated in binding of phospholipase C-delta 1 (PLC-delta 1) to both PtdIns(4,5)P2 and D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] [Cifuentes, M. E., Delaney, T. & Rebecchi, M. J. (1994) J. Biol. Chem. 269, 1945-1948]. We report herein that the isolated PH domain from PLC-delta 1 binds to both PtdIns(4,5)P2 and Ins(1,4,5)P3 with high affinity and shows the same binding specificity seen by others with whole PLC-delta 1. Thus the PH domain is functionally and structurally modular. These results demonstrate stereo-specific high-affinity binding by an isolated PH domain and further support a functional role for PH domains in the regulation of PLC isoforms. Other PH domains did not bind strongly to the compounds tested, suggesting that inositol phosphates and phospholipids are not likely physiological ligands for all PH domains. Nonetheless, since all PH-domain-containing proteins are associated with membrane surfaces, several PH domains bind to specific sites on membranes, and PH domains appear to be electrostatically polarized, a possible general role for PH domains in membrane association is suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuronal proliferation, migration, and differentiation are regulated by the sequential expression of particular genes at specific stages of development. Such processes rely on differential gene expression modulated through second-messenger systems. Early postnatal mouse cerebellar granule cells migrate into the internal granular layer and acquire differentiated properties. The neurotransmitter glutamate has been shown to play an important role in this developmental process. We show here by immunohistochemistry that the RelA subunit of the transcription factor NF-kappa B is present in several areas of the mouse brain. Moreover, immunofluorescence microscopy and electrophoretic mobility-shift assay demonstrate that in cerebellar granule cell cultures derived from 3- to 7-day-old mice, glutamate specifically activates the transcription factor NF-kappa B, as shown by binding of nuclear extract proteins to a synthetic oligonucleotide reproducing the kappa B site of human immunodeficiency virus. The use of different antagonists of the glutamate recpetors indicates that the effect of glutamate occurs mainly via N-methyl-D-aspartate (NMDA)-receptor activation, possibly as a result of an increase in intracellular Ca2+. The synaptic specificity of the effect is strongly suggested by the observation that glutamate failed to activate NF-kappa B in astrocytes, while cytokines, such as interleukin 1 alpha and tumor necrosis factor alpha, did so. The effect of glutamate appears to be developmentally regulated. Indeed, NF-kappa B is found in an inducible form in the cytoplasm of neurons of 3- to 7-day-old mice but is constitutively activated in the nuclei of neurons derived from older pups (8-10 days postnatal). Overall, these observations suggest the existence of a new pathway of trans-synaptic regulation of gene expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stimulation of muscarinic m1 or m3 receptors can, by generating diacylglycerol and activating protein kinase C, accelerate the breakdown of the amyloid precursor protein (APP) to form soluble, nonamyloidogenic derivatives (APPs), as previously shown. This relationship has been demonstrated in human glioma and neuroblastoma cells, as well as in transfected human embryonic kidney 293 cells and PC-12 cells. We now provide evidence that stimulation of metabotropic glutamate receptors (mGluRs), which also are coupled to phosphatidylinositol 4,5-bisphosphate hydrolysis, similarly accelerates processing of APP into nonamyloidogenic APPs. This process is demonstrated both in hippocampal neurons derived from fetal rats and in human embryonic kidney 293 cells transfected with cDNA expression constructs encoding the mGluR 1 alpha subtype. In hippocampal neurons, both an mGluR antagonist, L-(+)-2-amino-3-phosphonopropionic acid, and an inhibitor of protein kinase C, GF 109203X, blocked the APPs release evoked by glutamate receptor stimulation. Ionotropic glutamate agonists, N-methyl-D-aspartate or S(-)-5-fluorowillardiine, failed to affect APPs release. These data show that selective mGluR agonists that initiate signal-transduction events can regulate APP processing in bona fide primary neurons and transfected cells. As glutamatergic neurons in the cortex and hippocampus are damaged in Alzheimer disease, amyloid production in these regions may be enhanced by deficits in glutamatergic neurotransmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vitamin D endocrine system is regulated reciprocally by renal 25-hydroxyvitamin D3 1 alpha- and 24-hydroxylases. Previously, we reported that renal proximal convoluted tubules, the major site of 1 alpha, 25-dihydroxyvitamin D3 production, have vitamin D receptors. In the presence of vitamin D receptors, renal proximal convoluted tubules cannot maintain the state of enhanced production of 1 alpha, 25-dihydroxyvitamin D3. To clarify this discrepancy, we proposed a working hypothesis for the reciprocal control of renal 25-hydroxyvitamin D3 1 alpha- and 24-hydroxylase activities. In rat models of enhanced renal production of 1 alpha, 25-dihydroxyvitamin D3, expression of vitamin D receptors and 25-hydroxyvitamin D3 24-hydroxylase mRNAs was strikingly suppressed in renal proximal convoluted tubules but not in the cortical collecting ducts. In vitamin D-deficient rats with up-regulated renal 25-hydroxyvitamin D3 1 alpha-hydroxylase activity, expression of vitamin D receptor mRNA in renal proximal convoluted tubules was also down-regulated, indicating that the down-regulation of vitamin D receptor mRNA is not the result of the enhanced production of 1 alpha, 25-dihydroxyvitamin D3. In Japanese quail models with up-regulated renal 25-hydroxyvitamin D3 1 alpha-hydroxylase activity by sex steroids, expression of vitamin D receptor mRNA was also down-regulated in the kidney but not in the duodenum. These results suggest that the down-regulation of vitamin D receptors plays a critical role in production of 1 alpha, 25-dihydroxyvitamin D3 in renal proximal convoluted tubules.