80 resultados para MHC I peptides


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The binding of killer cell Ig-like Receptors (KIR) to their Class I MHC ligands was shown previously to be characterized by extremely rapid association and dissociation rate constants. During experiments to investigate the biochemistry of receptor–ligand binding in more detail, the kinetic parameters of the interaction were observed to alter dramatically in the presence of Zn2+ but not other divalent cations. The basis of this phenomenon is Zn2+-induced multimerization of the KIR molecules as demonstrated by BIAcore, analytical ultracentrifugation, and chemical cross-linking experiments. Zn2+-dependent multimerization of KIR may be critical for formation of the clusters of KIR and HLA-C molecules, the “natural killer (NK) cell immune synapse,” observed at the site of contact between the NK cell and target cell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A deranged expression of MHC class I glycoproteins, characteristic of a variety of malignancies, contributes to the ability of cancer to avoid destruction by T cell-mediated immunity. An abrogation of the metastatic capacity of B16 melanoma cells has been achieved by transfecting an MHC class I-encoding vector into class I-deficient B16 melanoma clones [Gorelik, E., Kim, M., Duty, L. & Galili, U. (1993) Clin. Exp. Metastasis 11, 439–452]. We report here that the deranged expression of class I molecules by B16 melanoma cells is more than a mere acquisition of the capacity to escape immune recognition. Namely, cells of the B16 melanoma prompted splenic lymphocytes to commit death after coculture. However, a class I-expressing and nonmetastatic CL8-2 clone was found to be less potent as an inducer of apoptosis than class I-deficient and metastatic BL9 and BL12 clones. Both Thy1.2+ and Thy1.2− splenocytes underwent cell death when exposed to the class I-deficient BL9 clone. A proportion of CD4+ and CD8+ cells among splenocytes exposed to the BL9 clone was lower than that observed in a coculture with cells of the CL8-2 clone. Consistently, none of the melanoma clones studied produced a ligand to the FAS receptor (FAS-L). Thus, our results provide evidence that (i) the production of FAS-L may not be the sole mechanism by which malignant cells induce apoptosis in immunocytes, and (ii) absence of MHC class I glycoproteins plays an important role in preventing the elimination of potential effector immunocytes by tumor cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Langerhans cells are a subset of dendritic cells (DCs) found in the human epidermis with unique morphological and molecular properties that enable their function as “sentinels” of the immune system. DCs are pivotal in the initiation and regulation of primary MHC class I restricted T lymphocyte immune responses and are able to present both endogenous and exogenous antigen onto class I molecules. Here, we study the MHC class I presentation pathway following activation of immature, CD34-derived human Langerhans cells by lipopolysaccharide (LPS). LPS induces an increase in all components of the MHC class I pathway including the transporter for antigen presentation (TAP), tapasin and ERp57, and the immunoproteasome subunits LMP2 and LMP7. Moreover, in CD34-derived Langerhans cells, the rapid increase in expression of MHC class I molecules seen at the cell surface following LPS activation is because of mobilization of MHC class I molecules from HLA-DM positive endosomal compartments, a pathway not seen in monocyte-derived DCs. Mobilization of class I from this compartment is primaquine sensitive and brefeldin A insensitive. These data demonstrate the regulation of the class I pathway in concert with the maturation of the CD34-derived Langerhans cells and suggest potential sites for antigen loading of class I proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oncolytic herpes simplex virus type 1 (HSV-1) vectors are promising therapeutic agents for cancer. Their efficacy depends on the extent of both intratumoral viral replication and induction of a host antitumor immune response. To enhance these properties while employing ample safeguards, two conditionally replicating HSV-1 vectors, termed G47Δ and R47Δ, have been constructed by deleting the α47 gene and the promoter region of US11 from γ34.5-deficient HSV-1 vectors, G207 and R3616, respectively. Because the α47 gene product is responsible for inhibiting the transporter associated with antigen presentation (TAP), its absence led to increased MHC class I expression in infected human cells. Moreover, some G47Δ-infected human melanoma cells exhibited enhanced stimulation of matched antitumor T cell activity. The deletion also places the late US11 gene under control of the immediate-early α47 promoter, which suppresses the reduced growth properties of γ34.5-deficient mutants. G47Δ and R47Δ showed enhanced viral growth in a variety of cell lines, leading to higher virus yields and enhanced cytopathic effect in tumor cells. G47Δ was significantly more efficacious in vivo than its parent G207 at inhibiting tumor growth in both immune-competent and immune-deficient animal models. Yet, when inoculated into the brains of HSV-1-sensitive A/J mice at 2 × 106 plaque forming units, G47Δ was as safe as G207. These results suggest that G47Δ may have enhanced antitumor activity in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The H-2Ld alloreactive 2C T cell receptor (TCR) is commonly considered as being positively selected on the H-2Kb molecule. Surprisingly, 2C TCR+ CD8+ single-positive T cells emerge in massive numbers in fetal thymic organ culture originating from 2C transgenic, H-2KbDb−/− (2C+KbDb−/−) but not in fetal thymic organ culture from β2-microglobulin−/− 2C transgenic animals. Mature CD8+ T cells are observed in newborn but not in adult 2C+KbDb−/− mice. These CD8+ T cells express the α4β7 integrin, which allows them to populate the intestine, a pattern of migration visualized by intrathymic injection of FITC and subsequent accrual of FITC-labeled lymphocytes in the gut. We conclude that the 2C TCR is reactive not only with H-2Ld and H-2Kb, but also with nonclassical MHC class I products to enable positive selection of 2C+ T cells in the fetal and newborn thymus and to support their maintenance in the intestine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell-mediated immune responses are essential for protection against many intracellular pathogens. For Mycobacterium tuberculosis (MTB), protection requires the activity of T cells that recognize antigens presented in the context of both major histocompatibility complex (MHC) class II and I molecules. Since MHC class I presentation generally requires antigen to be localized to the cytoplasmic compartment of antigen-presenting cells, it remains unclear how pathogens that reside primarily within endocytic vesicles of infected macrophages, such as MTB, can elicit specific MHC class I-restricted T cells. A mechanism is described for virulent MTB that allows soluble antigens ordinarily unable to enter the cytoplasm, such as ovalbumin, to be presented through the MHC class I pathway to T cells. The mechanism is selective for MHC class I presentation, since MTB infection inhibited MHC class II presentation of ovalbumin. The MHC class I presentation requires the tubercle bacilli to be viable, and it is dependent upon the transporter associated with antigen processing (TAP), which translocates antigenic peptides from the cytoplasm into the endoplasmic reticulum. The process is mimicked by Listeria monocytogenes and soluble listeriolysin, a pore-forming hemolysin derived from it, suggesting that virulent MTB may have evolved a comparable mechanism that allows molecules in a vacuolar compartment to enter the cytoplasmic presentation pathway for the generation of protective MHC class I-restricted T cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural killer (NK) cells are inhibited from killing cellular targets by major histocompatibility complex (MHC) class I molecules. In the mouse, this can be mediated by the Ly-49A NK cell receptor that specifically binds the H-2Dd MHC class I molecule, then inhibits NK cell activity. Previous experiments have indicated that Ly-49A recognizes the alpha 1/alpha 2 domains of MHC class I and that no specific MHC-bound peptide appeared to be involved. We demonstrate here that alanine-substituted peptides, having only the minimal anchor motifs, stabilized H-2Dd expression and provided resistance to H-2Dd-transfected, transporter associated with processing (TAP)-deficient cells from lysis by Ly-49A+ NK cells. Peptide-induced resistance was blocked only by an mAb that binds a conformational determinant on H-2Dd. Moreover, stabilization of "empty" H-2Dd heavy chains by exogenous beta 2-microglobulin did not confer resistance. In contrast to data for MHC class I-restricted T cells that are specific for peptides displayed MHC molecules, these data indicate that NK cells are specific for a peptide-induced conformational determinant, independent of specific peptide. This fundamental distinction between NK cells and T cells further implies that NK cells are sensitive only to global changes in MHC class I conformation or expression, rather than to specific pathogen-encoded peptides. This is consistent with the "missing self" hypothesis, which postulates that NK cells survey tissues for normal expression of MHC class I.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine specificity of two Ha255-262-specific, Kk-restricted T cells, and of a unique antibody, pSAN, specific for the same peptide-MHC complex. Independently, a model of the Ha255-262-Kk complex was generated through homology modeling and molecular mechanics refinement. The functional data and the model corroborated each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The major hurdle to be cleared in active immunotherapy of cancer is the poor immunogenicity of cancer cells. In previous attempts to overcome this problem, whole tumor cells have been used as vaccines, either admixed with adjuvant(s) or genetically engineered to express nonself proteins or immunomodulatory factors before application. We have developed a novel approach to generate an immunogeneic, highly effective vaccine: major histocompatibility complex (MHC) class I-positive cancer cells are administered together with MHC class I-matched peptide ligands of foreign, nonself origin, generated by a procedure we term transloading. Murine tumor lines of the H2-Kd or the H2-Db haplotype, melanoma M-3 and B16-F10, respectively, as well as colon carcinoma CT-26 (H2-Kd), were transloaded with MHC-matched influenza virus-derived peptides and applied as irradiated vaccines. Mice bearing a deposit of live M-3 melanoma cells were efficiently cured by this treatment. In the CT-26 colon carcinoma and the B16-F10 melanoma, high efficacies were obtained against tumor challenge, suggesting the universal applicability of this new type of vaccine. With foreign peptide ligands adapted to the requirements of a desired MHC class I haplotype, this concept may be used for the treatment of human cancers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human T-cell-mediated autoimmune diseases are genetically linked to particular alleles of MHC class II genes. Susceptibility to pemphigus vulgaris (PV), an autoimmune disease of the skin, is linked to a rare subtype of HLA-DR4 (DRB1*0402, 1 of 22 known DR4 subtypes). The PV-linked DR4 subtype differs from a rheumatoid arthritis-associated DR4 subtype (DRB1*0404) only at three residues (DR beta 67, 70, and 71). The disease is caused by autoantibodies against desmoglein 3 (DG), and T cells are thought to trigger the autoantibody production against this keratinocyte adhesion molecule. Based on the DRB1*0402 binding motif, seven candidate peptides of the DG autoantigen were identified. T cells from four PV patients with active disease responded to one of these DG peptides (residues 190-204); two patients also responded to DG-(206-220). T-cell clones specific for DG-(190-204) secreted high levels of interleukins 4 and 10, indicating that they may be important in triggering the production of DG-specific autoantibodies. The DG-(190-204) peptide was presented by the disease-linked DRB1*0402 molecule but not by other DR4 subtypes. Site-directed mutagenesis of DRB1*0402 demonstrated that selective presentation of DG-(190-204), which carries a positive charge at the P4 position, was due to the negatively charged residues of the P4 pocket (DR beta 70 and 71). DR beta 71 has a negative charge in DRB1*0402 but a positive charge in other DR4 subtypes, including the DR4 subtypes linked to rheumatoid arthritis. The charge of the P4 pocket in the DR4 peptide binding site therefore appears to be a critical determinant of MHC-linked susceptibility to PV and rheumatoid arthritis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experiments presented in this report were designed to specifically examine the role of CD4–major histocompatibility complex (MHC) class II interactions during T cell development in vivo. We have generated transgenic mice expressing class II molecules that cannot interact with CD4 but that are otherwise competent to present peptides to the T cell receptor. MHC class II expression was reconstituted in Aβ gene knock-out mice by injection of a transgenic construct encoding either the wild-type I-Aβb protein or a construct encoding a mutation designed to specifically disrupt binding to the CD4 molecule. We demonstrate that the mutation, EA137 and VA142 in the β2 domain of I-Ab, is sufficient to disrupt CD4–MHC class II interactions in vivo. Furthermore, we show that this interaction is critical for the efficient selection of a complete repertoire of mature CD4+ T helper cells as evidenced by drastically reduced numbers of conventional CD4+ T cells in animals expressing the EA137/VA142 mutant I-Ab and by the failure to positively select the transgenic AND T cell receptor on the mutated I-Ab. These results underscore the importance of the CD4–class II interaction in the development of mature peripheral CD4+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell surface heparan sulfate proteoglycan (HSPG) interactions with type I collagen may be a ubiquitous cell adhesion mechanism. However, the HSPG binding sites on type I collagen are unknown. Previously we mapped heparin binding to the vicinity of the type I collagen N terminus by electron microscopy. The present study has identified type I collagen sequences used for heparin binding and endothelial cell–collagen interactions. Using affinity coelectrophoresis, we found heparin to bind as follows: to type I collagen with high affinity (Kd ≈ 150 nM); triple-helical peptides (THPs) including the basic N-terminal sequence α1(I)87–92, KGHRGF, with intermediate affinities (Kd ≈ 2 μM); and THPs including other collagenous sequences, or single-stranded sequences, negligibly (Kd ≫ 10 μM). Thus, heparin–type I collagen binding likely relies on an N-terminal basic triple-helical domain represented once within each monomer, and at multiple sites within fibrils. We next defined the features of type I collagen necessary for angiogenesis in a system in which type I collagen and heparin rapidly induce endothelial tube formation in vitro. When peptides, denatured or monomeric type I collagen, or type V collagen was substituted for type I collagen, no tubes formed. However, when peptides and type I collagen were tested together, only the most heparin-avid THPs inhibited tube formation, likely by influencing cell interactions with collagen–heparin complexes. Thus, induction of endothelial tube morphogenesis by type I collagen may depend upon its triple-helical and fibrillar conformations and on the N-terminal heparin-binding site identified here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is an autoimmune disease associated with the HLA-DR4 and DR1 alleles. The target autoantigen(s) in RA is unknown, but type II collagen (CII) is a candidate, and the DR4- and DR1-restricted immunodominant T cell epitope in this protein corresponds to amino acids 261–273 (CII 261–273). We have defined MHC and T cell receptor contacts in CII 261–273 and provide strong evidence that this peptide corresponds to the peptide binding specificity previously found for RA-associated DR molecules. Moreover, we demonstrate that HLA-DR4 and human CD4 transgenic mice homozygous for the I-Abβ0 mutation are highly susceptible to collagen-induced arthritis and describe the clinical course and histopathological changes in the affected joints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distant relatives of major histocompatibility complex (MHC) class I molecules, human MICA and MICB, function as stress-induced antigens that are broadly recognized by intestinal epithelial γδ T cells. They may thus play a central role in the immune surveillance of damaged, infected, or otherwise stressed intestinal epithelial cells. However, the generality of this system in evolution and the mode of recognition of MICA and MICB are undefined. Analysis of cDNA sequences from various primate species defined translation products that are homologous to MICA and MICB. All of the MIC polypeptides have common characteristics, although they are extraordinarily diverse. The most notable alterations are several deletions and frequent amino acid substitutions in the putative α-helical regions of the α1α2 domains. However, the primate MIC molecules were expressed on the surfaces of normal and transfected cells. Moreover, despite their sharing of relatively few identical amino acids in potentially accessible regions of their α1α2 domains, they were recognized by diverse human intestinal epithelial γδ T cells that are restricted by MICA and MICB. Thus, MIC molecules represent a family of MHC proteins that are structurally diverse yet appear to be functionally conserved. The promiscuous mode of γδ T cell recognition of these antigens may be explained by their sharing of a single conserved interaction site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport of peptides across the membrane of the endoplasmic reticulum for assembly with MHC class I molecules is an essential step in antigen presentation to cytotoxic T cells. This task is performed by the major histocompatibility complex-encoded transporter associated with antigen processing (TAP). Using a combinatorial approach we have analyzed the substrate specificity of human TAP at high resolution and in the absence of any given sequence context, revealing the contribution of each peptide residue in stabilizing binding to TAP. Human TAP was found to be highly selective with peptide affinities covering at least three orders of magnitude. Interestingly, the selectivity is not equally distributed over the substrate. Only the N-terminal three positions and the C-terminal residue are critical, whereas effects from other peptide positions are negligible. A major influence from the peptide backbone was uncovered by peptide scans and libraries containing d amino acids. Again, independent of peptide length, critical positions were clustered near the peptide termini. These approaches demonstrate that human TAP is selective, with residues determining the affinity located in distinct regions, and point to the role of the peptide backbone in binding to TAP. This binding mode of TAP has implications in an optimized repertoire selection and in a coevolution with the major histocompatibility complex/T cell receptor complex.