33 resultados para MESSENGER-RNAS
Resumo:
As an adhesion receptor, the β2 integrin lymphocyte function-associated antigen-1 (LFA-1) contributes a strong adhesive force to promote T lymphocyte recirculation and interaction with antigen-presenting cells. As a signaling molecule, LFA-1-mediates transmembrane signaling, which leads to the generation of second messengers and costimulation resulting in T cell activation. We recently have demonstrated that, in costimulatory fashion, LFA-1 activation promotes the induction of T cell membrane urokinase plasminogen activator receptor (uPAR) and that this induced uPAR is functional. To investigate the mechanism(s) of this induction, we used the RNA polymerase II inhibitor 5,6-dichloro-1-β-d-ribobenzimidazole and determined that uPAR mRNA degradation is delayed by LFA-1 activation. Cloning of the wild-type, deleted and mutated 3′-untranslated region of the uPAR cDNA into a serum-inducible rabbit β-globin cDNA reporter construct revealed that the AU-rich elements and, in particular the nonameric UUAUUUAUU sequence, are crucial cis-acting elements in uPAR mRNA degradation. Experiments in which Jurkat T cells were transfected with reporter constructs demonstrated that LFA-1 engagement was able to stabilize the unstable reporter mRNA containing the uPAR 3′-untranslated region. Our study reveals a consequence of adhesion receptor-mediated signaling in T cells, which is potentially important in the regulation of T cell activation, including production of cytokines and expression of proto-oncogenes, many of which are controlled through 3′ AU-rich elements.
Resumo:
We used differential display analysis to identify mRNAs that accumulate to enhanced levels in human cytomegalovirus-infected cells as compared with mock-infected cells. RNAs were compared at 8 hr after infection of primary human fibroblasts. Fifty-seven partial cDNA clones were isolated, representing about 26 differentially expressed mRNAs. Eleven of the mRNAs were virus-coded, and 15 were of cellular origin. Six of the partial cDNA sequences have not been reported previously. All of the cellular mRNAs identified in the screen are induced by interferon α. The induction in virus-infected cells, however, does not involve the action of interferon or other small signaling molecules. Neutralizing antibodies that block virus infection also block the induction. These RNAs accumulate after infection with virus that has been inactivated by treatment with UV light, indicating that the inducer is present in virions. We conclude that human cytomegalovirus induces interferon-responsive mRNAs.
Resumo:
The non-coding RNAs database (http://biobases.ibch.poznan.pl/ncRNA/) contains currently available data on RNAs, which do not have long open reading frames and act as riboregulators. Non-coding RNAs are involved in the specific recognition of cellular nucleic acid targets through complementary base pairing to control cell growth and differentiation. Some of them are connected with several well known developmental and neurobehavioral disorders. We have divided them into four groups. This paper is a short introduction to the database and presents its latest, updated edition.
Resumo:
The database, called HyPaLib (for Hybrid Pattern Library), contains annotated structural elements characteristic for certain classes of structural and/or functional RNAs. These elements are described in a language specifically designed for this purpose. The language allows convenient specification of hybrid patterns, i.e. motifs consisting of sequence features and structural elements together with sequence similarity and thermodynamic constraints. We are currently developing software tools that allow a user to search sequence databases for any pattern in HyPaLib, thus providing functionality which is similar to PROSITE, but dedicated to the more complex patterns in RNA sequences. HyPaLib is available at http://bibiserv.techfak.uni-bielefeld.de/HyPa/.
Resumo:
Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3′ major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion.
Resumo:
Antisense-mediated gene silencing (ASGS) and posttranscriptional gene silencing (PTGS) with sense transgenes markedly reduce the steady-state mRNA levels of endogenous genes similar in transcribed sequence. RNase protection assays established that silencing in tobacco plants transformed with plant-defense-related class I sense and antisense chitinase (CHN) transgenes is at the posttranscriptional level. Infection of tobacco plants with cucumber mosaic virus strain FN and a necrotizing strain of potato virus Y, but not with potato virus X, effectively suppressed PTGS and ASGS of both the transgenes and homologous endogenes. This suggests that ASGS and PTGS share components associated with initiation and maintenance of the silent state. Small, ca. 25-nt RNAs (smRNA) of both polarities were associated with PTGS and ASGS in CHN transformants as reported for PTGS in other transgenic plants and for RNA interference in Drosophila. Similar results were obtained with an antisense class I β-1,3-glucanase transformant showing that viral suppression and smRNAs are a more general feature of ASGS. Several current models hold that diverse signals lead to production of double-stranded RNAs, which are processed to smRNAs that then trigger PTGS. Our results provide direct evidence for mechanistic links between ASGS and PTGS and suggest that ASGS could join a common PTGS pathway at the double-stranded RNA step.
Resumo:
The infected cell protein no. 0 (ICP0), the product of the alpha 0 gene, and an important herpes simplex virus 1 regulatory protein is encoded by three exons. We report that intron 1 forms a family of four stable nonpolyadenylylated cytoplasmic RNAs sharing a common 5' end but differing in 3' ends. The 5' and 3' ends correspond to the accepted splice donor and four splice acceptor sites within the mapped intron domain. The most distant splice acceptor site yields the mRNA encoding the 775-aa protein known as ICP0. The mRNAs resulting from the use of alternative splice acceptor sites were also present in the cytoplasm of infected cells and would be predicted to encode proteins of 152 (ICP0-B), 87 (ICP0-C), and 90 (ICP0-D) amino acids, respectively. Both the stability of the alpha 0 mRNA and the utilization of at least one splice acceptor site was regulated by ICP22 and or US1.5 protein inasmuch as cells infected with a mutant from which these genes had been deleted accumulated smaller amounts of alpha 0 mRNA than would be predicted from the amounts of accumulated intron RNAs. In addition, one splice acceptor site was at best underutilized. These results indicate that both the splicing pattern and longevity of alpha 0 mRNA are regulated. These and other recent examples indicate that herpes simplex virus 1 regulates its own gene expression and that of the infected cells through control of mRNA splicing and longevity.
Resumo:
Initiation of minus (-) strand DNA synthesis was examined on templates containing R, U5, and primer-binding site regions of the human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV) genomic RNA. DNA synthesis was initiated from (i) an oligoribonucleotide complementary to the primer-binding sites, (ii) synthetic tRNA(3Lys), and (iii) natural tRNA(3Lys), by the reverse transcriptases of HIV-1, FIV, EIAV, simian immunodeficiency virus, HIV type 2 (HIV-2), Moloney murine leukemia virus, and avian myeloblastosis virus. All enzymes used an oligonucleotide on wild-type HIV-1 RNA, whereas only a limited number initiated (-) strand DNA synthesis from either tRNA(3Lys). In contrast, all enzymes supported efficient tRNA(3Lys)-primed (-) strand DNA synthesis on the genomes of FIV and EIAV. This may be in part attributable to the observation that the U5-inverted repeat stem-loop of the EIAV and FIV genomes lacks an A-rich loop shown with HIV-1 to interact with the U-rich tRNA anticodon loop. Deletion of this loop in HIV-1 RNA, or disrupting a critical loop-loop complex by tRNA(3Lys) extended by 9 nt, restored synthesis of HIV-1 (-) strand DNA from primer tRNA(3Lys) by all enzymes. Thus, divergent evolution of lentiviruses may have resulted in different mechanisms to use the same host tRNA for initiation of reverse transcription.
Resumo:
Inositol phosphates are a family of water-soluble intracellular signaling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. Relatively little is known about the biological function of most members of this family, with the exception of inositol 1,4,5-trisphosphate. Specifically, the biological functions of inositol tetrakisphosphates are largely obscure. In this paper, we report that D-myo-inositol 3,4,5,6-tetrakisphosphate (D-Ins(3,4,5,6)P4) has a direct biphasic (activation/inhibition) effect on an epithelial Ca(2+)-activated chloride channel. The effect of D-Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of D-Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Our findings indicate the biological function of a molecule hitherto considered as an "orphan" messenger. They suggest that the molecular target for D-Ins(3,4,5,6)P4 is a plasma membrane Ca(2+)-activated chloride channel. Regulation of this channel by D-Ins(3,4,5,6)P4 and Ca2+ may have therapeutic implications for the disease states of both diabetic nephropathy and cystic fibrosis.
Resumo:
Although rRNA has a conserved core structure, its size varies by more than 2000 bases between eubacteria and vertebrates, mostly due to the size variation of discrete variable regions. Previous studies have shown that insertion of foreign sequences into some of these variable regions has little effect on rRNA function. These properties make rRNA a potentially very advantageous vehicle to carry other RNA moieties with biological activity, such as "antisense RNAs." We have explored this possibility by inserting antisense RNAs targeted against one essential and two nonessential genes into a site within a variable region in the Tetrahymena thermophila large subunit rRNA gene. Expression of each of the three genes tested can be drastically reduced or eliminated in transformed T. thermophila lines containing these altered rRNAs. In addition, we found that only antisense rRNAs containing RNA sequences complementary to the 5' untranslated region of the targeted mRNA were effective. Lines containing antisense rRNAs targeted against either of the nonessential genes grow well, indicating that the altered rRNAs fulfill their functions within the ribosome. Since functional rRNA is extremely abundant and stable and comes into direct contact with translated mRNAs, it may prove to be an unparalleled vehicle for enhancing the activity of functional RNAs that act on mRNAs.
Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping.
Resumo:
The cytochrome P450 2C24 gene is characterized by the capability to generate, in rat kidney, a transcript containing exons 2 and 4 spliced at correct sites but having the donor site of exon 4 directly joined to the acceptor site of exon 2 (exon scrambling). By reverse transcriptase-PCR analysis, it is now shown that the only exons present in the scrambled transcript are exons 2, 3, and 4 and that this molecule lacks a poly(A)+ tail. Furthermore, the use of PCR primers in both orientations of either exon 2 or exon 4 revealed that the orders of the exons in the scrambled transcript are 2-3-4-2 and 4-2-3-4, respectively. These results, combined with the observation that P450 2C24 is a single-copy gene, with no duplication of the exon 2 to exon 4 segment, suggest that the scrambled transcript has properties consistent with that of a circular molecule. In line with this is the observation of an increased resistance of the transcript to phosphodiesterase I, a 3'-exonuclease. Moreover, an alternatively processed cytochrome P450 2C24 mRNA, lacking the three scrambled exons and having exon 1 directly joined to exon 5, has been identified in kidney and liver, tissues that express the scrambled transcript. This complete identity of the exons that are absent in the alternatively processed mRNA but present in the scrambled transcript is interpreted as indicative of the possibility that exon scrambling and exon skipping might be interrelated phenomena. It is therefore proposed that alternative pre-mRNA processing has the potential to generate not only mRNAs lacking one or more exons but also circular RNA molecules.