18 resultados para MEDULLARY COLLECTING DUCT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermittent electrical footshock induces c-fos expression in parvocellular neurosecretory neurons expressing corticotropin-releasing factor and in other visceromotor cell types of the paraventricular hypothalamic nucleus (PVH). Since catecholaminergic neurons of the nucleus of the solitary tract and ventrolateral medulla make up the dominant loci of footshock-responsive cells that project to the PVH, these were evaluated as candidate afferent mediators of hypothalamic neuroendocrine responses. Rats bearing discrete unilateral transections of this projection system were exposed to a single 30-min footshock session and sacrificed 2 hr later. Despite depletion of the aminergic innervation on the ipsilateral side, shock-induced up-regulation of Fos protein and corticotropin-releasing factor mRNA were comparable in strength and distribution in the PVH on both sides of the brain. This lesion did, however, result in a substantial reduction of Fos expression in medullary aminergic neurons on the ipsilateral side. These results contrast diametrically with those obtained in a systemic cytokine (interleukin 1) challenge paradigm, where similar cuts ablated the Fos response in the ipsilateral PVH but left intact the induction seen in the ipsilateral medulla. We conclude that (i) footshock-induced activation of medullary aminergic neurons is a secondary consequence of stress, mediated via a descending projection transected by our ablation, (ii) stress-induced activation of medullary aminergic neurons is not necessarily predictive of an involvement of these cell groups in driving hypothalamic visceromotor responses to a given stressor, and (iii) despite striking similarities in the complement of hypothalamic effector neurons and their afferents that may be activated by stresses of different types, distinct mechanisms may underlie adaptive hypothalamic responses in each.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of basolateral membrane Na+/H+ exchange in transepithelial HCO3- absorption (JHCO3) was examined in the isolated, perfused medullary thick ascending limb (MTAL) of the rat. In Na(+)-free solutions, addition of Na+ to the bath resulted in a rapid, amiloride-sensitive increase in intracellular pH. In MTALs perfused and bathed with solutions containing 146 mM Na+ and 25 mM HCO3-, bath addition of amiloride (1 mM) or 5-(N-ethyl-N-isopropyl) amiloride (EIPA, 50 microM) reversibly inhibited JHCO3 by 50%. Evidence that the inhibition of JHCO3 by bath amiloride was the result of inhibition of Na+/H+ exchange included the following: (i) the IC50 for amiloride was 5-10 microM, (ii) EIPA was a 50-fold more potent inhibitor than amiloride, (iii) the inhibition by bath amiloride was Na+ dependent, and (iv) significant inhibition was observed with EIPA as low as 0.1 microM. Fifty micromolar amiloride or 1 microM EIPA inhibited JHCO3 by 35% when added to the bath but had no effect when added to the tubule lumen, indicating that addition of amiloride to the bath did not directly inhibit apical membrane Na+/H+ exchange. In experiments in which apical Na+/H+ exchange was assessed from the initial rate of cell acidification following luminal EIPA addition, bath EIPA secondarily inhibited apical Na+/H+ exchange activity by 46%. These results demonstrate basolateral membrane Na+/H+ exchange enhances transepithelial HCO3- absorption in the MTAL. This effect appears to be the result of cross-talk in which an increase in basolateral membrane Na+/H+ exchange activity secondarily increases apical membrane Na+/H+ exchange activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fragments of small interlobular bile ducts averaging 20 microns in diameter can be isolated from rat liver. These isolated bile duct units form luminal spaces that are impermeant to dextran-40 and expand in size when cultured in 10 microM forskolin for 24-48 hr. Secretion is Cl- and HCO3- dependent and is stimulated by forskolin > dibutyryl cAMP > secretion but not by dideoxyforskolin, as assessed by video imaging techniques. Secretin stimulates Cl-/HCO3- exchange activity, and intraluminal pH increases after forskolin administration. These studies establish that small polarized physiologically intact interlobular bile ducts can be isolated from rat liver. These isolated bile duct units should be useful preparations for assessing the transport properties of small bile duct segments, which are the primary site of injury in cholestatic liver disorders, known as "vanishing bile duct syndromes."