32 resultados para MATURATION PROMOTING FACTOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of the RpoS (σS) subunit of RNA polymerase in Escherichia coli is a prime example of regulated proteolysis in prokaryotes. RpoS turnover depends on ClpXP protease, the response regulator RssB, and a hitherto uncharacterized “turnover element” within RpoS itself. Here we localize the turnover element to a small element (around the crucial amino acid lysine-173) directly downstream of the promoter-recognizing region 2.4 in RpoS. Its sequence as well as its location identify the turnover element as a unique proteolysis-promoting motif. This element is shown to be a site of interaction with RssB. Thus, RssB is functionally unique among response regulators as a direct recognition factor in ClpXP-dependent RpoS proteolysis. Binding of RssB to RpoS is stimulated by phosphorylation of the RssB receiver domain, suggesting that environmental stress affects RpoS proteolysis by modulating RssB affinity for RpoS. Initial evidence indicates that lysine-173 in RpoS, besides being essential of RpoS proteolysis, may play a role in promoter recognition. Thus the same region in RpoS is crucial for proteolysis as well as for activity as a transcription factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain has enormous anabolic needs during early postnatal development. This study presents multiple lines of evidence showing that endogenous brain insulin-like growth factor 1 (Igf1) serves an essential, insulin-like role in promoting neuronal glucose utilization and growth during this period. Brain 2-deoxy-d- [1-14C]glucose uptake parallels Igf1 expression in wild-type mice and is profoundly reduced in Igf1−/− mice, particularly in those structures where Igf1 is normally most highly expressed. 2-Deoxy-d- [1-14C]glucose is significantly reduced in synaptosomes prepared from Igf1−/− brains, and the deficit is corrected by inclusion of Igf1 in the incubation medium. The serine/threonine kinase Akt/PKB is a major target of insulin-signaling in the regulation of glucose transport via the facilitative glucose transporter (GLUT4) and glycogen synthesis in peripheral tissues. Phosphorylation of Akt and GLUT4 expression are reduced in Igf1−/− neurons. Phosphorylation of glycogen synthase kinase 3β and glycogen accumulation also are reduced in Igf1−/− neurons. These data support the hypothesis that endogenous brain Igf1 serves an anabolic, insulin-like role in developing brain metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have demonstrated hematopoietic stem cell amplification in vitro after the activation of three cell-surface receptors: flt3/flk2, c-kit, and gp130. We now show flt3-ligand and Steel factor alone will stimulate >85% of c-kit+Sca-1+lin− adult mouse bone marrow cells to proliferate in single-cell serum-free cultures, but concomitant retention of their stem cell activity requires additional exposure to a ligand that will activate gp130. Moreover, this response is restricted to a narrow range of gp130-activating ligand concentrations, above and below which hematopoietic stem cell activity is lost. These findings indicate a unique contribution of gp130 signaling to the maintenance of hematopoietic stem cell function when these cells are stimulated to divide with additional differential effects dictated by the intensity of gp130 activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vestibules of adult guinea pigs were lesioned with gentamicin and then treated with perilymphatic infusion of either of two growth factor mixtures (i.e., GF I or GF II). GF I contained transforming growth factor α (TGFα), insulin-like growth factor type one (IGF-1), and retinoic acid (RA), whereas GF II contained those three factors and brain-derived neurotrophic factor. Treatment with GF I significantly enhanced vestibular hair cell renewal in ototoxin-damaged utricles and the maturation of stereociliary bundle morphology. The addition of brain-derived neurotrophic factor to the GF II infusion mixture resulted in the return of type 1 vestibular hair cells in ototoxin-damaged cristae, and improved vestibular function. These results suggest that growth factor therapy may be an effective treatment for balance disorders that are the result of hair cell dysfunction and/or loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the transport of the precursor of the 17-kD subunit of the photosynthetic O2-evolving complex (OE17) in intact chloroplasts in the presence of inhibitors that block two protein-translocation pathways in the thylakoid membrane. This precursor uses the transmembrane pH gradient-dependent pathway into the thylakoid lumen, and its transport across the thylakoid membrane is thought to be independent of ATP and the chloroplast SecA homolog, cpSecA. We unexpectedly found that azide, widely considered to be an inhibitor of cpSecA, had a profound effect on the targeting of the photosynthetic OE17 to the thylakoid lumen. By itself, azide caused a significant fraction of mature OE17 to accumulate in the stroma of intact chloroplasts. When added in conjunction with the protonophore nigericin, azide caused the maturation of a fraction of the stromal intermediate form of OE17, and this mature protein was found only in the stroma. Our data suggest that OE17 may use the sec-dependent pathway, especially when the transmembrane pH gradient-dependent pathway is inhibited. Under certain conditions, OE17 may be inserted across the thylakoid membrane far enough to allow removal of the transit peptide, but then may slip back out of the translocation machinery into the stromal compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The X chromosome-linked transcription factor GATA-1 is expressed specifically in erythroid, mast, megakaryocyte, and eosinophil lineages, as well as in hematopoietic progenitors. Prior studies revealed that gene-disrupted GATA-1- embryonic stem cells give rise to adult (or definitive) erythroid precursors arrested at the proerythroblast stage in vitro and fail to contribute to adult red blood cells in chimeric mice but did not clarify a role in embryonic (or yolk sac derived) erythroid cells. To examine the consequences of GATA-1 loss on embryonic erythropoiesis in vivo, we inactivated the GATA-1 locus in embryonic stem cells by gene targeting and transmitted the mutated allele through the mouse germ line. Male GATA-1- embryos die between embryonic day 10.5 and 11.5 (E10.5-E11.5) of gestation. At E9.5, GATA-1- embryos exhibit extreme pallor yet contain embryonic erythroid cells arrested at an early proerythroblast-like stage of their development. Embryos stain weakly with benzidine reagent, and yolk sac cells express globin RNAs, indicating globin gene activation in the absence of GATA-1. Female heterozygotes (GATA-1+/-) are born pale due to random inactivation of the X chromosome bearing the normal allele. However, these mice recover during the neonatal period, presumably as a result of in vivo selection for progenitors able to express GATA-1. Our findings conclusively establish the essential role for GATA-1 in erythropoiesis within the context of the intact developing mouse and further demonstrate that the block to cellular maturation is similar in GATA-1- embryonic and definitive erythroid precursors. Moreover, the recovery of GATA-1+/- mice from anemia seen at birth provides evidence indicating a role for GATA-1 at the hematopoietic progenitor cell level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London) 371, 606-609]. In adults, IPF1 expression is restricted to the beta-cells in the islets of Langerhans. We report here that IPF1 induces expression of a subset of beta-cell-specific genes (insulin and islet amyloid polypeptide) when ectopically expressed in clones of transformed pancreatic islet alpha-cells. In contrast, expression of IPF1 in rat embryo fibroblasts factor failed to induce insulin and islet amyloid polypeptide expression. This is most likely due to the lack of at least one other essential insulin gene transcription factor, the basic helix-loop-helix protein Beta 2/NeuroD, which is expressed in both alpha- and beta-cells. We conclude that IPF1 is a potent transcriptional activator of endogenous insulin genes in non-beta islet cells, which suggests an important role of IPF1 in beta-cell maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic mice were generated in which the cDNA for the human insulin-like growth factor 1B (IGF-1B) was placed under the control of a rat alpha-myosin heavy chain promoter. In mice heterozygous for the transgene, IGF-1B mRNA was not detectable in the fetal heart at the end of gestation, was present in modest levels at 1 day after birth, and increased progressively with postnatal maturation, reaching a peak at 75 days. Myocytes isolated from transgenic mice secreted 1.15 +/- 0.25 ng of IGF-1 per 10(6) cells per 24 hr versus 0.27 +/- 0.10 ng in myocytes from homozygous wild-type littermates. The plasma level of IGF-1 increased 84% in transgenic mice. Heart weight was comparable in wild-type littermates and transgenic mice up to 45 days of age, but a 42%, 45%, 62%, and 51% increase was found at 75, 135, 210, and 300 days, respectively, after birth. At 45, 75, and 210 days, the number of myocytes in the heart was 21%, 31%, and 55% higher, respectively, in transgenic animals. In contrast, myocyte cell volume was comparable in transgenic and control mice at all ages. In conclusion, overexpression of IGF-1 in myocytes leads to cardiomegaly mediated by an increased number of cells in the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to elucidate the role of the proteasome pathway or multicatalytic proteinase complex in the induction of immunologic nitric oxide (NO) synthase (iNOS) in rat alveolar macrophages activated by lipopolysaccharide. Macrophages were incubated in the presence of lipopolysaccharide plus test agent for up to 24 hr. Culture media were analyzed for accumulation of stable oxidation products of NO (NO2- + N03-, designated as NOX-), cellular RNA was extracted for determination of iNOS mRNA levels by Northern blot analysis, and nuclear extracts were prepared for determination of NF-kappa B by electrophoretic mobility-shift assay. Inhibitors of calpain (alpha-N-acetyl-Leu-Leu-norleucinal; N-benzyloxycarbonyl-Leu-leucinal) and the proteasome (N-benzyloxycarbonyl-Ile-Glu-(O-t-Bu)-Ala-leucinal) markedly inhibited or abolished the induction of iNOS in macrophages. The proteinase inhibitors interfered with lipopolysaccharide-induced NOX- production by macrophages, and this effect was accompanied by comparable interference with the appearance of both iNOS mRNA and NF-kappa B. Calpain inhibitors elicited effects at concentrations of 1-100 microM, whereas the proteasome inhibitor was 1000-fold more potent, producing significant inhibitory effects at 1 nM. The present findings indicate that the proteasome pathway is essential for lipopolysaccharide-induced expression of the iNOS gene in rat alveolar macrophages. Furthermore, the data support the view that the proteasome pathway is directly involved in promoting the activation of NF-kappa B and that the induction of iNOS by lipopolysaccharide involves the transcriptional action of NF-kappaB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of m7GpppN (where N is any nucleotide), termed cap, is present at the 5' end of all eukaryotic cellular mRNAs (except organellar). The eukaryotic initiation factor 4E (eIF-4E) binds to the cap and facilitates the formation of translation initiation complexes. eIF-4E is implicated in control of cell growth, as its overexpression causes malignant transformation of rodent cells and deregulates HeLa cell growth. It was suggested that overexpression of eIF-4E results in the enhanced translation of poorly translated mRNAs that encode growth-promoting proteins. Indeed, enhanced expression of several proteins, including cyclin D1 and ornithine decarboxylase (ODC), was documented in eIF-4E-overexpressing NTH 3T3 cells. However, the mechanism underlying this increase has not been elucidated. Here, we studied the mode by which eIF-4E increases the expression of cyclin D1 and ODC. We show that the increase in the amount of cyclin D1 and ODC is directly proportional to the degree of eIF-4E overexpression. Two mechanisms, which are not mutually exclusive, are responsible for the increase. In eIF-4E-overexpressing cells the rate of translation initiation of ODC mRNA was increased inasmuch as the mRNA sedimented with heavier polysomes. For cyclin D1 mRNA, translation initiation was not increased, but rather its amount in the cytoplasm increased, without a significant increase in total mRNA. Whereas, in the parental NIH 3T3 cell line, a large proportion of the cyclin D1 mRNA was confined to the nucleus, in eIF-4E-overexpressing cells the vast majority of the mRNA was present in the cytoplasm. These results indicate that eIF-4E affects directly or indirectly mRNA nucleocytoplasmic transport, in addition to its role in translation initiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein kinase C (PKC), a major cellular receptor for tumor-promoting phorbol esters and diacylglycerols (DGs), appears to be involved in a variety of cellular functions, although its activation mechanism in vivo is not yet fully understood. To evaluate the signaling pathways involved in the activation of PKC epsilon upon stimulation by platelet-derived growth factor (PDGF) receptor (PDGFR), we used a series of PDGFR "add-back" mutants. Activation of a PDGFR mutant (Y40/51) that binds and activates phosphatidylinositol 3-kinase (PI 3-kinase) caused translocation of PKC epsilon from the cytosol to the membrane in response to PDGF. A PDGFR mutant (Y1021) that binds and activates phospholipase C gamma (PLC gamma), but not PI 3-kinase, also caused the PDGF-dependent translocation of PKC epsilon. The translocation of PKC epsilon upon stimulation of PDGFR (Y40/51) was inhibited by wortmannin, an inhibitor of PI 3-kinase. Activation of PKC epsilon was further confirmed in terms of PKC epsilon-dependent expression of a phorbol 12-tetradecanoate 13-acetate response element (TRE)-luciferase reporter. Further, purified PKC epsilon was activated in vitro by either DG or synthetic phosphatidylinositol 3,4,5-trisphosphate. These results clearly demonstrate that PKC epsilon is activated through redundant and independent signaling pathways which most likely involve PLC gamma or PI 3-kinase in vivo and that PKC epsilon is one of the downstream mediators of PI 3-kinase whose downstream targets remain to be identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which insulin-like growth factors (IGFs) can be both mitogenic and differentiation-promoting in skeletal myoblasts are unclear because these two processes are believed to be mutually exclusive in this tissue. The phosphorylation state of the ubiquitous nuclear retinoblastoma protein (Rb) plays an important role in determining whether myoblasts proliferate or differentiate: Phosphorylated Rb promotes mitogenesis, whereas un- (or hypo-) phosphorylated Rb promotes cell cycle exit and differentiation. We hypothesized that IGFs might affect the fate of myoblasts by regulating the phosphorylation of Rb. Although long-term IGF treatment is known to stimulate differentiation, we find that IGFs act initially to inhibit differentiation and are exclusively mitogenic. These early effects of IGFs are associated with maintenance of Rb phosphorylation typical of proliferating cells; upregulation of the gene expression of cyclin-dependent kinase 4 and cyclin D1, components of a holoenzyme that plays a principal role in mediating Rb phosphorylation; and marked inhibition of the gene expression of myogenin, a member of the MyoD family of skeletal muscle-specific transcription factors that is essential in muscle differentiation. We also find that IGF-induced inhibition of differentiation occurs through a process that is independent of its mitogenic effects. We demonstrate, thus, that IGFs regulate Rb phosphorylation and cyclin D1 and cyclin-dependent kinase 4 gene expression; together with their biphasic effects on myogenin expression, these results suggest a mechanism by which IGFs are initially mitogenic and subsequently differentiation-promoting in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) promotes survival of midbrain dopaminergic neurons and motoneurons. Expression of GDNF mRNA in cerebellum raises the possibility that cells within this structure might also respond to GDNF. To examine potential trophic activities of GDNF, dissociated cultures of gestational day 18 rat cerebellum were grown for < or = 21 days in the presence of factor. GDNF increased Purkinje cell number without affecting the overall number of neurons or glial cells. A maximal response (50% above control) was elicited with GDNF at 1 pg/ml. Effects of GDNF on Purkinje cell differentiation were examined by scoring the morphologic maturation of cells in treated and control cultures. GDNF increased the proportion of Purkinje cells that displayed relatively mature morphologies, characterized by dendritic thickening and the development of spines and filopodial extensions. Morphologic maturation of the overall neuronal population was unaffected. In sum, our data indicate that GDNF is a potent survival and differentiation factor for Purkinje cells, the efferent neurons of cerebellar cortex. Together with its other actions, these findings raise the possibility that GDNF might be a critical trophic factor at multiple loci in neuronal circuits that control motor function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observed that when monocyte/macrophage precursors derived from murine bone marrow were treated with macrophage-colony-stimulating factor (M-CSF), there was a dose-dependent increase in both the number of adherent cells and the degree to which the cells were highly spread. Attachment was supported by fibronectin, but not by vitronectin or laminin, suggesting that the integrins alpha 4 beta 1 and/or alpha 5 beta 1 might mediate this event. Binding to fibronectin was blocked partially by antibodies to either integrin, and inhibition was almost complete when the antibodies were used in combination. By a combination of surface labeling with 125I and metabolic labeling with [35S]methionine and [35S]cysteine, we demonstrated that M-CSF treatment led to increased synthesis and surface expression of the two beta 1 integrins. Since attachment to fibronectin and/or stromal cells plays an important role in the maturation of other hematopoietic lineages, we propose that the action of M-CSF in the differentiation of immature monocytes/macrophages includes stimulated expression of the integrins alpha 4 beta 1 and alpha 5 beta 1, leading to interactions with components of the marrow microenvironment necessary for cell maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wound repair and tumor vascularization depend upon blood vessel growth into hypoxic tissue. Although hypoxia slows endothelial cell (EC) proliferation and suppresses EC basic fibroblast growth factor (bFGF) expression, we report that macrophages (MPs) exposed to PO2 approximately 12-14 torr (1 torr = 133.3 Pa) synthesize and release in a time-dependent manner platelet-derived growth factor (PDGF) and acidic/basic FGFs (a/bFGFs), which stimulate the growth of hypoxic ECs. Chromatography of hypoxic MP-conditioned medium on immobilized heparin with an ascending NaCl gradient resolved three peaks of mitogenic activity: activity of the first peak was neutralized by antibody to PDGF; activity of the second peak was neutralized by antibody to aFGF; and activity of the third peak was neutralized by antibody to bFGF. Metabolically labeled lysates and supernatants from MPs exposed to hypoxia showed increased synthesis and release of immunoprecipitable PDGF and a/bFGF in the absence of changes in cell viability. Possible involvement of a heme-containing oxygen sensor in MP elaboration of growth factors was suggested by the induction of bFGF and PDGF by normoxic MPs exposed to nickel or cobalt, although metabolic inhibitors such as sodium azide were without effect. These results suggest a paracrine model in which hypoxia stimulates MP release of PDGF and a/bFGF, inducing EC proliferation and potentially promoting angiogenesis in hypoxic environments.