61 resultados para MALARIA VECTORS
Resumo:
In the South West Pacific region, the striking geographical correlation between the frequency of α+-thalassemia and the endemicity of Plasmodium falciparum suggests that this hemoglobinopathy provides a selective advantage against malaria. In Vanuatu, paradoxically, α+-thalassemia increases the incidence of contracting mild malaria in the first 2 years of life, but severe disease was too uncommon to assess adequately. Therefore, we undertook a prospective case-control study of children with severe malaria on the north coast of Papua New Guinea, where malaria transmission is intense and α+-thalassemia affects more than 90% of the population. Compared with normal children, the risk of having severe malaria was 0.40 (95% confidence interval 0.22–0.74) in α+-thalassemia homozygotes and 0.66 (0.37–1.20) in heterozygotes. Unexpectedly, the risk of hospital admission with infections other than malaria also was reduced to a similar degree in homozygous (0.36; 95% confidence interval 0.22–0.60) and heterozygous (0.63; 0.38–1.07) children. This clinical study demonstrates that a malaria resistance gene protects against disease caused by infections other than malaria. The mechanism of the remarkable protective effect of α+-thalassemia against severe childhood disease remains unclear but must encompass the clear interaction between this hemoglobinopathy and both malarial and nonmalarial infections.
Resumo:
Binding of infected erythrocytes to brain venules is a central pathogenic event in the lethal malaria disease complication, cerebral malaria. The only parasite adhesion trait linked to cerebral sequestration is binding to intercellular adhesion molecule-1 (ICAM-1). In this report, we show that Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) binds ICAM-1. We have cloned and expressed PfEMP1 recombinant proteins from the A4tres parasite. Using heterologous expression in mammalian cells, the minimal ICAM-1 binding domain was a complex domain consisting of the second Duffy binding-like (DBL) domain and the C2 domain. Constructs that contained either domain alone did not bind ICAM-1. Based on phylogenetic criteria, there are five distinct PfEMP1 DBL types designated α, β, γ, δ, and ɛ. The DBL domain from the A4tres that binds ICAM-1 is DBLβ type. A PfEMP1 cloned from a distinct ICAM-1 binding variant, the A4 parasite, contains a DBLβ domain and a C2 domain in tandem arrangement similar to the A4tres PfEMP1. Anti-PfEMP1 antisera implicate the DBLβ domain from A4var PfEMP1 in ICAM-1 adhesion. The identification of a P. falciparum ICAM-1 binding domain may clarify mechanisms responsible for the pathogenesis of cerebral malaria and lead to interventions or vaccines that reduce malarial disease.
α-Galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria
Resumo:
Natural killer T (NKT) cells are a unique population of lymphocytes that coexpress a semiinvariant T cell and natural killer cell receptors, which are particularly abundant in the liver. To investigate the possible effect of these cells on the development of the liver stages of malaria parasites, a glycolipid, α-galactosylceramide (α-GalCer), known to selectively activate Vα14 NKT cells in the context of CD1d molecules, was administered to sporozoite-inoculated mice. The administration of α-GalCer resulted in rapid, strong antimalaria activity, inhibiting the development of the intrahepatocytic stages of the rodent malaria parasites Plasmodium yoelii and Plasmodium berghei. The antimalaria activity mediated by α-GalCer is stage-specific, since the course of blood-stage-induced infection was not inhibited by administration of this glycolipid. Furthermore, it was determined that IFN-γ is essential for the antimalaria activity mediated by the glycolipid. Taken together, our results provide the clear evidence that NKT cells can mediate protection against an intracellular microbial infection.
Resumo:
Gene therapy for patients with hemoglobin disorders has been hampered by the inability of retrovirus vectors to transfer globin genes and their cis-acting regulatory sequences into hematopoietic stem cells without rearrangement. In addition, the expression from intact globin gene vectors has been variable in red blood cells due to position effects and retrovirus silencing. We hypothesized that by substituting the globin gene promoter for the promoter of another gene expressed in red blood cells, we could generate stable retrovirus vectors that would express globin at sufficient levels to treat hemoglobinopathies. Recently, we have shown that the human ankyrin (Ank) gene promoter directs position-independent, copy number-dependent expression of a linked γ-globin gene in transgenic mice. We inserted the Ank/Aγ-globin gene into retrovirus vectors that could transfer one or two copies of the Ank/Aγ-globin gene to target cells. Both vectors were stable, transferring only intact proviral sequences into primary mouse hematopoietic stem cells. Expression of Ank/Aγ-globin mRNA in mature red blood cells was 3% (single copy) and 8% (double copy) of the level of mouse α-globin mRNA. We conclude that these novel retrovirus vectors may be valuable for treating a variety of red cell disorders by gene replacement therapy including severe β-thalassemia if the level of expression can be further increased.
Resumo:
Eight novel families of miniature inverted repeat transposable elements (MITEs) were discovered in the African malaria mosquito, Anopheles gambiae, by using new software designed to rapidly identify MITE-like sequences based on their structural characteristics. Divergent subfamilies have been found in two families. Past mobility was demonstrated by evidence of MITE insertions that resulted in the duplication of specific TA, TAA, or 8-bp targets. Some of these MITEs share the same target duplications and similar terminal sequences with MITEs and other DNA transposons in human and other organisms. MITEs in A. gambiae range from 40 to 1340 copies per genome, much less abundant than MITEs in the yellow fever mosquito, Aedes aegypti. Statistical analyses suggest that most A. gambiae MITEs are in highly AT-rich regions, many of which are closely associated with each other. The analyses of these novel MITEs underscored interesting questions regarding their diversity, origin, evolution, and relationships to the host genomes. The discovery of diverse families of MITEs in A. gambiae has important practical implications in light of current efforts to control malaria by replacing vector mosquitoes with genetically modified refractory mosquitoes. Finally, the systematic approach to rapidly identify novel MITEs should have broad applications for the analysis of the ever-growing sequence databases of a wide range of organisms.
Resumo:
Sequestration of malaria-infected erythrocytes in the peripheral circulation has been associated with the virulence of Plasmodium falciparum. Defining the adhesive phenotypes of infected erythrocytes may therefore help us to understand how severe disease is caused and how to prevent or treat it. We have previously shown that malaria-infected erythrocytes may form apparent autoagglutinates of infected erythrocytes. Here we show that such autoagglutination of a laboratory line of P. falciparum is mediated by platelets and that the formation of clumps of infected erythrocytes and platelets requires expression of the platelet surface glycoprotein CD36. Platelet-dependent clumping is a distinct adhesive phenotype, expressed by some but not all CD36-binding parasite lines, and is common in field isolates of P. falciparum. Finally, we have established that platelet-mediated clumping is strongly associated with severe malaria. Precise definition of the molecular basis of this intriguing adhesive phenotype may help to elucidate the complex pathophysiology of malaria.
Resumo:
FULL-malaria is a database for a full-length-enriched cDNA library from the human malaria parasite Plasmodium falciparum (http://133.11.149.55/). Because of its medical importance, this organism is the first target for genome sequencing of a eukaryotic pathogen; the sequences of two of its 14 chromosomes have already been determined. However, for the full exploitation of this rapidly accumulating information, correct identification of the genes and study of their expression are essential. Using the oligo-capping method, we have produced a full-length-enriched cDNA library from erythrocytic stage parasites and performed one-pass reading. The database consists of nucleotide sequences of 2490 random clones that include 390 (16%) known malaria genes according to BLASTN analysis of the nr-nt database in GenBank; these represent 98 genes, and the clones for 48 of these genes contain the complete protein-coding sequence (49%). On the other hand, comparisons with the complete chromosome 2 sequence revealed that 35 of 210 predicted genes are expressed, and in addition led to detection of three new gene candidates that were not previously known. In total, 19 of these 38 clones (50%) were full-length. From these observations, it is expected that the database contains ∼1000 genes, including 500 full-length clones. It should be an invaluable resource for the development of vaccines and novel drugs.
Resumo:
The uptake and expression of extracellular DNA has been established as a mechanism for horizontal transfer of genes between bacterial species. Such transfer can support acquisition of advantageous elements, including determinants that affect the interactions between infectious organisms and their hosts. Here we show that erythrocyte-stage Plasmodium falciparum malaria parasites spontaneously take up DNA from the host cell cytoplasm into their nuclei. We have exploited this finding to produce levels of reporter expression in P.falciparum that are substantially improved over those obtained by electroporation protocols currently used to transfect malaria parasites. Parasites were transformed to a drug-resistant state when placed into cell culture with erythrocytes containing a plasmid encoding the human dihydrofolate reductase sequence. The findings reported here suggest that the malaria genome may be continually exposed to exogenous DNA from residual nuclear material in host erythrocytes.
Resumo:
The study of the large-sample distribution of the canonical correlations and variates in cointegrated models is extended from the first-order autoregression model to autoregression of any (finite) order. The cointegrated process considered here is nonstationary in some dimensions and stationary in some other directions, but the first difference (the “error-correction form”) is stationary. The asymptotic distribution of the canonical correlations between the first differences and the predictor variables as well as the corresponding canonical variables is obtained under the assumption that the process is Gaussian. The method of analysis is similar to that used for the first-order process.