22 resultados para Long Distance Anaphora
Resumo:
Chloroplast movement was induced by partial cell illumination using a high-fluence blue microbeam in light-grown and dark-adapted prothallial cells of the fern Adiantum capillus-veneris. Chloroplasts inside the illuminated area moved out (high-fluence response [HFR]), whereas those outside moved toward the irradiated area (low-fluence response [LFR]), although they stopped moving when they reached the border. These results indicate that both HFR and LFR signals are generated by high-fluence blue light of the same area, and that an LFR signal can be transferred long-distance from the beam spot, although an HFR signal cannot. The lifetime of the HFR signal was calculated from the traces of chloroplast movement induced by a brief pulse from a high-fluence blue microbeam to be about 6 min. This is very short compared with that of the LFR (30–40 min; T. Kagawa, M. Wada [1994] J Plant Res 107: 389–398). These data indicate that the signal transduction pathways of the HFR and the LFR must be distinct.
Resumo:
Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants.
Resumo:
The Ediacaran biota is the earliest diverse community of macroscopic animals and protoctists. Body and trace fossils in the Clemente Formation of northwestern Sonora extend downward the geologic range of Ediacaran forms. Taxa present in the Clemente Formation include cf. Cyclomedusa plana, Sekwia sp., an erniettid (bearing an air mattress-like "pneu" body construction), and the trace fossils Lockeia ichnosp. and Palaeophycus tubularis. The trace fossils confirm the presence of sediment-dwelling animals in this shallow marine community. The body fossils are headless, tailless, and appendageless. Some may be body fossils of animals but others may be fossils of large protoctists. These body and trace fossils, recovered from thinly bedded sandstones and siltstones, occur 75 meters lower in the Sonoran stratigraphic section than a distinctive Clemente Formation oolite. The stratigraphic position of the fossils below this oolite permits long-distance correlation between fossiliferous Proterozoic strata of Mexico and the United States. Correlations utilizing both the Clemente Formation oolite and a trace fossil (Vermiforma antiqua) confirm the antiquity (600 million years or more) of this body fossil-rich community of macroscopic eukaryotes. The recently discovered body fossils are the oldest known remains of the Ediacaran biota.
Resumo:
Localized, chemical two-photon photolysis of caged glutamate was used to map the changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors caused by long-term synaptic depression (LTD) in cerebellar Purkinje cells. LTD produced by pairing parallel fiber activity with depolarization was accompanied by a decline in the response of Purkinje cells to uncaged glutamate that accounted for both the time course and magnitude of LTD. This depression of glutamate responses was observed not only at the site of parallel fiber stimulation but also at more distant sites. The amount of LTD decreased with distance and was half-maximal 50 μm away from the site of parallel fiber activity. Estimation of the number of parallel fibers active during LTD induction indicates that LTD modified glutamate receptors not only at active synapses but also at 600 times as many inactive synapses on a single Purkinje cell. Therefore, both active and inactive parallel fiber synapses can undergo changes at a postsynaptic locus as a result of associative pre- and postsynaptic activity.
Resumo:
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance.
Resumo:
Slow potential recording was used for long-term monitoring of the penumbra zone surrounding an ischemic region produced by middle cerebral artery (MCA) occlusion in adult hooded rats (n = 32). Four capillary electrodes (El-E4) were chronically implanted at 2-mm intervals from AP -3, L 2 (El) to AP 0, L 5 (E4). Spontaneous or evoked slow potential waves of spreading depression (SD) were recorded during and 4 h after a 1-h MCA occlusion and at 2- to 3-day intervals afterward for 3 weeks. Duration of the initial focal ischemic depolarization was maximal at E4 and decreased with distance from the focus. SD waves in the penumbra zone were high at El and E2, low and prolonged at E3, and almost absent at E4. Amplitude of elicited SD waves was further reduced 3 days later and slowly increased in the following week. Cortical areas displaying marked reduction of SD waves in the first days after MCA occlusion either remained low or showed substantial (60%) recovery, the probability of which decreased with the duration of the initial focal ischemic depolarization and increased with the distance from the focus. It is concluded that the outcome of ischemia monitored by long-term SD recovery in the perifocal region can be partly predicted from the acute signs of MCA occlusion.
Resumo:
The use of molecular genetics to introduce both a metal ion binding site and a nitroxide spin label into the same protein opens the use of paramagnetic metalnitroxyl interactions to estimate intramolecular distances in a wide variety of proteins. In this report, a His-Xaa3-His metal ion binding motif was introduced at the N terminus of the long interdomain helix of T4 lysozyme (Lys-65 --> His/Gln-69 --> His) of three mutants, each containing a single nitroxide-labeled cysteine residue at position 71, 76, or 80. The results show that Cu(II)-induced relaxation effects on the nitroxide can be quantitatively analyzed in terms of interspin distance in the range of 10-25 A using Redfield theory, as first suggested by Leigh [Leigh, J.S. (1970) J. Chem. Phys. 52, 2608-2612]. Of particular interest is the observation that distances can be determined both under rigid lattice conditions in frozen solution and in the presence of motion of the spins at room temperature under physiological conditions. The method should be particularly attractive for investigating structure in membrane proteins that are difficult to crystallize. In the accompanying paper, the technique is applied to a polytopic membrane protein, lactose permease.