56 resultados para Leptospira growth inhibition test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All three isoforms of transforming growth factors beta (TGF-betal, TGF-beta2, and TGF-beta3) are secreted as latent complexes and activated extracellularly, leading to the release of the mature cytokines from their noncovalently associated proregions, also known as latency-associated peptides (LAPs). The LAP region of TGF-beta1 was expressed in a baculovirus expression system and purified to homogeneity. In vitro assays of growth inhibition and gene induction mediated by TGF-beta3 demonstrate that recombinant TGF-beta1 LAP is a potent inhibitor of the activities of TGF-betal, -beta2, and -beta3. Effective dosages of LAP for 50% neutralization of TGF-beta activities range from 4.7- to 80-fold molar excess depending on the TGF-beta isoform and activity examined. Using 125I-labeled LAP, we show that the intraperitoneal application route is effective for systemic administration of LAP. Comparison of concentrations of LAP in tissues shows a homogenous pattern in most organs with the exception of heart and muscle, in which levels of LAP are 4- to 8-fold lower. In transgenic mice with elevated hepatic levels of bioactive TGF-betal, treatment with recombinant LAP completely reverses suppression of the early proliferative response induced by TGF-beta1 in remnant livers after partial hepatectomy. The results suggest that recombinant LAP is a potent inhibitor of bioactive TGF-beta both in vitro and in vivo, after intraperitoneal administration. Recombinant LAP should be a useful tool for novel approaches to study and therapeutically modulate pathophysiological processes mediated by TGF-beta3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

d-alpha-Tocopherol, but not d-beta-tocopherol, negatively regulates proliferation of vascular smooth muscle cells at physiological concentrations. d-alpha-Tocopherol inhibits protein kinase C (PKC) activity, whereas d-beta-tocopherol is ineffective. Furthermore d-beta-tocopherol prevents the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol. The negative regulation by d-alpha-tocopherol of PKC activity appears to be the cause and not the effect of smooth muscle cell growth inhibition. d-alpha-Tocopherol does not act by binding to PKC directly but presumably by preventing PKC activation. It is concluded that, in vascular smooth muscle cells, d-alpha-tocopherol acts specifically through a nonantioxidant mechanism and exerts a negative control on a signal transduction pathway regulating cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the more intriguing aspects of transforming growth factor beta 1 (TGF beta 1) is its ability to function as both a mitogenic factor for certain mesenchymal cells and a potent growth inhibitor of lymphoid, endothelial, and epithelial cells. Data are presented indicating that c-myc may play a pivotal role in both the mitogenic and antiproliferative actions of TGF beta 1. In agreement with previous studies using C3H/10T1/2 fibroblasts constitutively expressing an exogenous c-myc cDNA, we show that AKR-2B fibroblasts expressing a chimeric estrogen-inducible form of c-myc (mycER) are able to form colonies in soft agar in the presence of TGF beta 1 only when c-myc is activated by hormone. Whereas these findings support a synergistic role for c-myc in mitogenic responses to TGF beta 1, we also find that c-myc can antagonize the growth-inhibitory response to TGF beta 1. Mouse keratinocytes (BALB/MK), which are normally growth-arrested by TGF beta 1, are rendered insensitive to the growth-inhibitory effects of TGF beta 1 upon mycER activation. This ability of mycER activation to block TGF beta 1-induced growth arrest was found to occur only when the fusion protein was induced with hormone in the early part of G1. Addition of estradiol late in G1 had no suppressive effect on TGF beta 1-induced growth inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retinoids are reported to reduce incidence of second primary aerodigestive cancers. Mechanisms for this chemoprevention are previously linked to all-trans retinoic acid (RA) signaling growth inhibition at G1 in carcinogen-exposed immortalized human bronchial epithelial cells. This study investigated how RA suppresses human bronchial epithelial cell growth at the G1-S cell cycle transition. RA signaled growth suppression of human bronchial epithelial cells and a decline in cyclin D1 protein but not mRNA expression. Exogenous cyclin D1 protein also declined after RA treatment of transfected, immortalized human bronchial epithelial cells, suggesting that posttranslational mechanisms were active in this regulation of cyclin D1 expression. Findings were extended by showing treatment with ubiquitin-dependent proteasome inhibitors: calpain inhibitor I and lactacystin each prevented this decreased cyclin D1 protein expression, despite RA treatment. Treatment with the cysteine proteinase inhibitor, E-64, did not prevent this cyclin D1 decline. High molecular weight cyclin D1 protein species appeared after proteasome inhibitor treatments, suggesting that ubiquitinated species were present. To learn whether RA directly promoted degradation of cyclin D1 protein, studies using human bronchial epithelial cell protein extracts and in vitro-translated cyclin D1 were performed. In vitro-translated cyclin D1 degraded more rapidly when incubated with extracts from RA treated vs. untreated cells. Notably, this RA-signaled cyclin D1 proteolysis depended on the C-terminal PEST sequence, a region rich in proline (P), glutamate (E), serine (S), and threonine (T). Taken together, these data highlight RA-induced cyclin D1 proteolysis as a mechanism signaling growth inhibition at G1 active in the prevention of human bronchial epithelial cell transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast peptide-methionine sulfoxide reductase (MsrA) was overexpressed in a Saccharomyces cerevisiae null mutant of msrA by using a high-copy plasmid harboring the msrA gene and its promoter. The resulting strain had about 25-fold higher MsrA activity than its parent strain. When exposed to either hydrogen peroxide, paraquat, or 2,2′-azobis-(2-amidinopropane) dihydrochloride treatment, the MsrA overexpressed strain grew better, had lower free and protein-bound methionine sulfoxide and had a better survival rate under these conditions than did the msrA mutant and its parent strain. Substitution of methionine with methionine sulfoxide in a medium lacking hydrogen peroxide had little effect on the growth pattern, which suggests that the oxidation of free methionine in the growth medium was not the main cause of growth inhibition of the msrA mutant. Ultraviolet A radiation did not result in obvious differences in survival rates among the three strains. An enhanced resistance to hydrogen peroxide treatment was shown in human T lymphocyte cells (Molt-4) that were stably transfected with the bovine msrA and exposed to hydrogen peroxide. The survival rate of the transfected strain was much better than its parent strain when grown in the presence of hydrogen peroxide. These results support the proposition that the msrA gene is involved in the resistance of yeast and mammalian cells to oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast transport GTPase Ypt6p is dispensable for cell growth and secretion, but its lack results in temperature sensitivity and missorting of vacuolar carboxypeptidase Y. We previously identified four yeast genes (SYS1, 2, 3, and 5) that on high expression suppressed these phenotypic alterations. SYS3 encodes a 105-kDa protein with a predicted high α-helical content. It is related to a variety of mammalian Golgi-associated proteins and to the yeast Uso1p, an essential protein involved in docking of endoplasmic reticulum–derived vesicles to the cis-Golgi. Like Uso1p, Sys3p is predominatly cytosolic. According to gel chromatographic, two-hybrid, and chemical cross-linking analyses, Sys3p forms dimers and larger protein complexes. Its loss of function results in partial missorting of carboxypeptidase Y. Double disruptions of SYS3 and YPT6 lead to a significant growth inhibition of the mutant cells, to a massive accumulation of 40- to 50-nm vesicles, to an aggravation of vacuolar protein missorting, and to a defect in α-pheromone processing apparently attributable to a perturbation of protease Kex2p cycling between the Golgi and a post-Golgi compartment. The results of this study suggest that Sys3p, like Ypt6p, acts in vesicular transport (presumably at a vesicle-docking stage) between an endosomal compartment and the most distal Golgi compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast Ca2+ adenosine triphosphatase Pmr1, located in medial-Golgi, has been implicated in intracellular transport of Ca2+ and Mn2+ ions. We show here that addition of Mn2+ greatly alleviates defects of pmr1 mutants in N-linked and O-linked protein glycosylation. In contrast, accurate sorting of carboxypeptidase Y (CpY) to the vacuole requires a sufficient supply of intralumenal Ca2+. Most remarkably, pmr1 mutants are also unable to degrade CpY*, a misfolded soluble endoplasmic reticulum protein, and display phenotypes similar to mutants defective in the stress response to malfolded endoplasmic reticulum proteins. Growth inhibition of pmr1 mutants on Ca2+-deficient media is overcome by expression of other Ca2+ pumps, including a SERCA-type Ca2+ adenosine triphosphatase from rabbit, or by Vps10, a sorting receptor guiding non-native luminal proteins to the vacuole. Our analysis corroborates the dual function of Pmr1 in Ca2+ and Mn2+ transport and establishes a novel role of this secretory pathway pump in endoplasmic reticulum-associated processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In complex with FKBP12, the immunosuppressant rapamycin binds to and inhibits the yeast TOR1 and TOR2 proteins and the mammalian homologue mTOR/FRAP/RAFT1. The TOR proteins promote cell cycle progression in yeast and human cells by regulating translation and polarization of the actin cytoskeleton. A C-terminal domain of the TOR proteins shares identity with protein and lipid kinases, but only one substrate (PHAS-I), and no regulators of the TOR-signaling cascade have been identified. We report here that yeast TOR1 has an intrinsic protein kinase activity capable of phosphorylating PHAS-1, and this activity is abolished by an active site mutation and inhibited by FKBP12-rapamycin or wortmannin. We find that an intact TOR1 kinase domain is essential for TOR1 functions in yeast. Overexpression of a TOR1 kinase-inactive mutant, or of a central region of the TOR proteins distinct from the FRB and kinase domains, was toxic in yeast, and overexpression of wild-type TOR1 suppressed this toxic effect. Expression of the TOR-toxic domain leads to a G1 cell cycle arrest, consistent with an inhibition of TOR function in translation. Overexpression of the PLC1 gene, which encodes the yeast phospholipase C homologue, suppressed growth inhibition by the TOR-toxic domains. In conclusion, our findings identify a toxic effector domain of the TOR proteins that may interact with substrates or regulators of the TOR kinase cascade and that shares sequence identity with other PIK family members, including ATR, Rad3, Mei-41, and ATM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the activities of IFN-γ are the result of STAT1-mediated transcriptional responses. In this study, we show that the BRCA1 tumor suppressor acts in concert with STAT1 to differentially activate transcription of a subset of IFN-γ target genes and mediates growth inhibition by this cytokine. After IFN-γ treatment, induction of the cyclin-dependent kinase inhibitor, p21WAF1, was synergistically activated by BRCA1, whereas the IRF-1 gene was unaffected. Importantly, the differential induction of p21WAF1 was impaired in breast cancer cells homozygous for the mutant BRCA1 5382C allele. Biochemical analysis illustrated that the mechanism of this transcriptional synergy involves interaction between BRCA1 aa 502–802 and the C-terminal transcriptional activation domain of STAT1 including Ser-727 whose phosphorylation is crucial for transcriptional activation. Significantly, STAT1 proteins mutated at Ser-727 bind poorly to BRCA1, reinforcing the importance of Ser-727 in the recruitment of transcriptional coactivators by STAT proteins. These findings reveal a novel mechanism for BRCA1 function in the IFN-γ-dependent tumor surveillance system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor that plays a key role in the differentiation of adipocytes. Activation of this receptor in liposarcomas and breast and colon cancer cells also induces cell growth inhibition and differentiation. In the present study, we show that PPARγ is expressed in human prostate adenocarcinomas and cell lines derived from these tumors. Activation of this receptor with specific ligands exerts an inhibitory effect on the growth of prostate cancer cell lines. Further, we show that prostate cancer and cell lines do not have intragenic mutations in the PPARγ gene, although 40% of the informative tumors have hemizygous deletions of this gene. Based on our preclinical data, we conducted a phase II clinical study in patients with advanced prostate cancer using troglitazone, a PPARγ ligand used for the treatment of type 2 diabetes. Forty-one men with histologically confirmed prostate cancer and no symptomatic metastatic disease were treated orally with troglitazone. An unexpectedly high incidence of prolonged stabilization of prostate-specific antigen was seen in patients treated with troglitazone. In addition, one patient had a dramatic decrease in serum prostate-specific antigen to nearly undetectable levels. These data suggest that PPARγ may serve as a biological modifier in human prostate cancer and its therapeutic potential in this disease should be further investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO•) is a toxin, and various life forms appear to have evolved strategies for its detoxification. NO•-resistant mutants of Escherichia coli were isolated that rapidly consumed NO•. An NO•-converting activity was reconstituted in extracts that required NADPH, FAD, and O2, was cyanide-sensitive, and produced NO3−. This nitric oxide dioxygenase (NOD) contained 19 of 20 N-terminal amino acids identical to those of the E. coli flavohemoglobin. Furthermore, NOD activity was produced by the flavohemoglobin gene and was inducible by NO•. Flavohemoglobin/NOD-deficient mutants were also sensitive to growth inhibition by gaseous NO•. The results identify a function for the evolutionarily conserved flavohemoglobins and, moreover, suggest that NO• detoxification may be a more ancient function for the widely distributed hemoglobins, and associated methemoglobin reductases, than dioxygen transport and storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of phytochrome B (phyB) in Arabidopsis has previously been demonstrated to result in dominant negative interference of phytochrome A (phyA)-mediated hypocotyl growth inhibition in far-red (FR) light. This phenomenon has been examined further in this study and has been found to be dependent on the FR fluence rate and on the availability of metabolizable sugars in the growth medium. Poorly metabolized sugars capable of activating the putative hexokinase sensory function were not effective in eliciting the phytochrome interference response. Overexpressed phyB lacking the chromophore-binding site was also effective at inhibiting the phyA response, especially at higher fluence rates of FR. Overexpressed phyB produces the dominant negative phenotype without any apparent effect on phyA abundance or degradation. It is possible that phyA and phyB interact with a common reaction partner but that either the energy state of the cell or a separate sugar-signaling mechanism modulates the phytochrome-signaling interactions.