23 resultados para LEXA-REGULON


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of gene regulation have revealed that several transcriptional regulators can switch between activator and repressor depending upon both the promoter and the cellular context. A relatively simple prokaryotic example is illustrated by the Escherichia coli CytR regulon. In this system, the cAMP receptor protein (CRP) assists the binding of RNA polymerase as well as a specific negative regulator, CytR. Thus, CRP functions either as an activator or as a corepressor. Here we show that, depending on promoter architecture, the CRP/CytR nucleoprotein complex has opposite effects on transcription. When acting from a site close to the DNA target for RNA polymerase, CytR interacts with CRP to repress transcription, whereas an interaction with CRP from appropriately positioned upstream binding sites can result in formation of a huge preinitiation complex and transcriptional activation. Based on recent results about CRP-mediated regulation of transcription initiation and the finding that CRP possesses discrete surface-exposed patches for protein-protein interaction with RNA polymerase and CytR, a molecular model for this dual regulation is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequence specific regulators of eukaryotic gene expression, axiomatically, act through double stranded DNA targets. Proteins that recognize DNA cis-elements as single strands but for which compelling evidence has been lacking to indicate in vivo involvement in transcription are orphaned in this scheme. We sought to determine whether sequence specific single strand binding proteins can find their cognate elements and modify transcription in vivo by studying heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds the single stranded sequence (CCCTCCCCA; CT-element) of the human c-myc gene in vitro. To monitor its DNA binding in vivo, the ability of hnRNP K to activate a reporter gene was amplified by fusion with the VP16 transactivation domain. This chimeric protein was found to transactivate circular but not linear CT-element driven reporters, suggesting that hnRNP K recognizes a single strand region generated by negative supercoiling in circular plasmid. When CT-elements were engineered to overlap with lexA operators, addition of lexA protein, either in vivo or in vitro, abrogated hnRNP K binding most likely by preventing single strand formation. These results not only reveal hnRNP K to be a single strand DNA binding protein in vivo, but demonstrate how a segment of DNA may modify the transcriptional activity of an adjacent gene through the interconversion of duplex and single strands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phagocytic cells are a critical line of defense against infection. The ability of a pathogen to survive and even replicate within phagocytic cells is a potent method of evading the defense mechanisms of the host. A number of pathogens survive within macrophages after phagocytosis and this contributes to their virulence. Salmonella is one of these pathogens. Here we report that 6-14 hr after Salmonella enters the macrophage and replicates, it resides in large vacuoles and causes the destruction of these cells. Furthermore, we identified four independently isolated MudJ-lacZ insertion mutants that no longer cause the formation of these vacuoles or kill the macrophages. All four insertions were located in the ompR/envZ regulon. These findings suggest that killing and escape from macrophages may be as important steps in Salmonella pathogenesis as are survival and replication in these host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A HeLa cDNA expression library was screened for human polypeptides that interacted with the poliovirus RNA-dependent RNA polymerase, 3D, using the two-hybrid system in the yeast Saccharomyces cerevisiae. Sam68 (Src-associated in mitosis, 68 kDa) emerged as the human cDNA that, when fused to a transcriptional activation domain, gave the strongest 3D interaction signal with a LexA-3D hybrid protein. 3D polymerase and Sam68 coimmunoprecipitated from infected human cell lysates with antibodies that recognized either protein. Upon poliovirus infection, Sam68 relocalized from the nucleus to the cytoplasm, where poliovirus replication occurs. Sam68 was isolated from infected cell lysates with an antibody that recognizes poliovirus protein 2C, suggesting that it is found on poliovirus-induced membranes upon which viral RNA synthesis occurs. These data, in combination with the known RNA- and protein-binding properties of Sam68, make Sam68 a strong candidate for a host protein with a functional role in poliovirus replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of amyloid fibril formation by beta-amyloid peptide (Abeta) are typical of a nucleation-dependent polymerization mechanism. This type of mechanism suggests that the study of the interaction of Abeta with itself can provide some valuable insights into Alzheimer disease amyloidosis. Interaction of Abeta with itself was explored with the yeast two-hybrid system. Fusion proteins were created by linking the Abeta fragment to a LexA DNA-binding domain (bait) and also to a B42 transactivation domain (prey). Protein-protein interactions were measured by expression of these fusion proteins in Saccharomyces cerevisiae harboring lacZ (beta-galactosidase) and LEU2 (leucine utilization) genes under the control of LexA-dependent operators. This approach suggests that the Abeta molecule is capable of interacting with itself in vivo in the yeast cell nucleus. LexA protein fused to the Drosophila protein bicoid (LexA-bicoid) failed to interact with the B42 fragment fused to Abeta, indicating that the observed Abeta-Abeta interaction was specific. Specificity was further shown by the finding that no significant interaction was observed in yeast expressing LexA-Abeta bait when the B42 transactivation domain was fused to an Abeta fragment with Phe-Phe at residues 19 and 20 replaced by Thr-Thr (AbetaTT), a finding that is consistent with in vitro observations made by others. Moreover, when a peptide fragment bearing this substitution was mixed with native Abeta-(1-40), it inhibited formation of fibrils in vitro as examined by electron microscopy. The findings presented in this paper suggest that the two-hybrid system can be used to study the interaction of Abeta monomers and to define the peptide sequences that may be important in nucleation-dependent aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inducible SOS system increases the survival of bacteria exposed to DNA-damaging agents by increasing the capacity of error-free and error-prone DNA repair systems. The inducible mutator effect is expected to contribute to the adaptation of bacterial populations to these adverse life conditions by increasing their genetic variability. The evolutionary impact of the SOS system would be even greater if it was also induced under conditions common in nature, such as in resting bacterial populations. The results presented here show that SOS induction and mutagenesis do occur in bacteria in aging colonies on agar plates. The observed SOS induction and mutagenesis are controlled by the LexA repressor and are RecA- and cAMP-dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most eukaryotic promoters contain multiple binding sites for one or more transcriptional activators that interact in a synergistic manner. A common view is that synergism is a manifestation of the need for many contacts between activators and the general transcription machinery that a single activator presumably cannot fulfill. In this model, various combinations of protein-protein interactions control the level of gene expression. However, we show here that under physiological conditions, a single binding site and presumably GAL4 can activate transcription to the maximum possible level in vivo. Synergistic effects in this natural system are shown to be consistent with cooperative DNA binding. These results point to DNA occupancy as the major element in fine tuning gene expression in the galactose regulon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SSN6-TUP1 protein complex represses transcription of diversely regulated genes in the yeast Saccharomyces cerevisiae. Here we present evidence that MIG1, a zinc-finger protein in the EGR1/Zif268 family, recruits SSN6-TUP1 to glucose-repressed promoters. DNA-bound LexA-MIG1 represses transcription of a target gene in glucose-grown cells, and repression requires SSN6 and TUP1. We also show that MIG1 and SSN6 fusion proteins interact in the two-hybrid system. Unexpectedly, we found that LexA-MIG1 activates transcription strongly in an ssn6 mutant and weakly in a tup1 mutant. Finally, LexA-MIG1 does not repress transcription in glucose-deprived cells, and MIG1 is differentially phosphorylated in response to glucose availability. We suggest a role for phosphorylation in regulating repression.