39 resultados para L-arginine


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd ≈ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor–heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein–protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED50 values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because ascorbic acid (AA) is concentrated in synaptic vesicles containing glutamic acid, we hypothesized that AA might act as a neurotransmitter. Because AA is an antioxidant, it might therefore inhibit nitric oxidergic (NOergic) activation of luteinizing hormone-releasing hormone (LH-RH) release from medial basal hypothalamic explants by chemically reducing NO. Cell membrane depolarization induced by increased potassium concentration [K+] increased medium concentrations of both AA and LH-RH. An inhibitor of NO synthase (NOS), NG-monomethyl-l-arginine (NMMA), prevented the increase in medium concentrations of AA and LH-RH induced by high [K+], suggesting that NO mediates release of both AA and LH-RH. Calcium-free medium blocked not only the increase in AA in the medium but also the release of LH-RH. Sodium nitroprusside, which releases NO, stimulated LH-RH release and decreased the concentration of AA in the incubation medium, presumably because the NO released oxidized AA to dehydro-AA. AA (10−5 to 10−3 M) had no effect on basal LH-RH release but completely blocked high [K+]- and nitroprusside-induced LH-RH release. N-Methyl-d-aspartic acid (NMDA), which mimics the action of the excitatory amino acid neurotransmitter glutamic acid, releases LH-RH by releasing NO. AA (10−5 to 10−3 M) inhibited the LH-RH-releasing action of NMDA. AA may be an inhibitory neurotransmitter that blocks NOergic stimulation of LH-RH release by chemically reducing the NO released by the NOergic neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Certain proteins contain subunits that enable their active translocation across the plasma membrane into cells. In the specific case of HIV-1, this subunit is the basic domain Tat49–57 (RKKRRQRRR). To establish the optimal structural requirements for this translocation process, and thereby to develop improved molecular transporters that could deliver agents into cells, a series of analogues of Tat49–57 were prepared and their cellular uptake into Jurkat cells was determined by flow cytometry. All truncated and alanine-substituted analogues exhibited diminished cellular uptake, suggesting that the cationic residues of Tat49–57 play a principal role in its uptake. Charge alone, however, is insufficient for transport as oligomers of several cationic amino acids (histidine, lysine, and ornithine) are less effective than Tat49–57 in cellular uptake. In contrast, a 9-mer of l-arginine (R9) was 20-fold more efficient than Tat49–57 at cellular uptake as determined by Michaelis–Menton kinetic analysis. The d-arginine oligomer (r9) exhibited an even greater uptake rate enhancement (>100-fold). Collectively, these studies suggest that the guanidinium groups of Tat49–57 play a greater role in facilitating cellular uptake than either charge or backbone structure. Based on this analysis, we designed and synthesized a class of polyguanidine peptoid derivatives. Remarkably, the subset of peptoid analogues containing a six-methylene spacer between the guanidine head group and backbone (N-hxg), exhibited significantly enhanced cellular uptake compared to Tat49–57 and even to r9. Overall, a transporter has been developed that is superior to Tat49–57, protease resistent, and more readily and economically prepared.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eosinophil migration in vivo is markedly attenuated in rats treated chronically with the NO synthase (NOS) inhibitor Nω-nitro-l-arginine methyl ester (l-NAME). In this study, we investigated the existence of a NOS system in eosinophils. Our results demonstrated that rat peritoneal eosinophils strongly express both type II (30.2 ± 11.6% of counted cells) and type III (24.7 ± 7.4% of counted cells) NOS, as detected by immunohistochemistry using affinity purified mouse mAbs. Eosinophil migration in vitro was evaluated by using 48-well microchemotaxis chambers and the chemotactic agents used were N-formyl-methionyl-leucyl-phenylalanine (fMLP, 5 × 10−8 M) and leukotriene B4 (LTB4, 10−8 M). l-NAME (but not d-NAME) significantly inhibited the eosinophil migration induced by both fMLP (54% reduction for 1.0 mM; P < 0.05) and LTB4 (61% reduction for 1.0 mM; P < 0.05). In addition, the type II NOS inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine and the type I/II NOS inhibitor 1-(2-trifluoromethylphenyl) imidazole also markedly (P < 0.05) attenuated fMLP- (52% and 38% reduction for 1.0 mM, respectively) and LTB4- (52% and 51% reduction for 1.0 mM, respectively) induced migration. The inhibition of eosinophil migration by l-NAME was mimicked by the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3,-a] quinoxalin-1-one (0.01 and 0.1 mM) and reversed by either sodium nitroprusside (0.1 mM) or dibutyryl cyclic GMP (1 mM). We conclude that eosinophils do express NO synthase(s) and that nitric oxide plays an essential role in eosinophil locomotion by acting through a cyclic GMP transduction mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functional brain mapping based on changes in local cerebral blood flow (lCBF) or glucose utilization (lCMRglc) induced by functional activation is generally carried out in animals under anesthesia, usually α-chloralose because of its lesser effects on cardiovascular, respiratory, and reflex functions. Results of studies on the role of nitric oxide (NO) in the mechanism of functional activation of lCBF have differed in unanesthetized and anesthetized animals. NO synthase inhibition markedly attenuates or eliminates the lCBF responses in anesthetized animals but not in unanesthetized animals. The present study examines in conscious rats and rats anesthetized with α-chloralose the effects of vibrissal stimulation on lCMRglc and lCBF in the whisker-to-barrel cortex pathway and on the effects of NO synthase inhibition with NG-nitro-l-arginine methyl ester (l-NAME) on the magnitude of the responses. Anesthesia markedly reduced the lCBF and lCMRglc responses in the ventral posteromedial thalamic nucleus and barrel cortex but not in the spinal and principal trigeminal nuclei. l-NAME did not alter the lCBF responses in any of the structures of the pathway in the unanesthetized rats and also not in the trigeminal nuclei of the anesthetized rats. In the thalamus and sensory cortex of the anesthetized rats, where the lCBF responses to stimulation had already been drastically diminished by the anesthesia, l-NAME treatment resulted in loss of statistically significant activation of lCBF by vibrissal stimulation. These results indicate that NO does not mediate functional activation of lCBF under physiological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decreased nitric oxide (NO) activity, the formation of reactive oxygen species, and increased endothelial expression of the redox-sensitive vascular cell adhesion molecule 1 (VCAM-1) gene in the vessel wall are early and characteristic features of atherosclerosis. To explore whether these phenomena are functionally interrelated, we tested the hypothesis that redox-sensitive VCAM-1 gene expression is regulated by a NO-sensitive mechanism. In early passaged human umbilical vein endothelial cells and human dermal microvascular endothelial cells, the NO donor diethylamine-NO (DETA-NO, 100 microM) reduced VCAM-1 gene expression induced by the cytokine tumor necrosis factor alpha (TNF-alpha, 100 units/ml) at the cell surface level by 65% and intracellular adhesion molecule 1 (ICAM-1) gene expression by 35%. E-selectin gene expression was not affected. No effect on expression of cell adhesion molecules was observed with DETA alone. Moreover, DETA-NO suppressed TNF-alpha-induced mRNA accumulation of VCAM-1 and TNF-alpha-mediated transcriptional activation of the human VCAM-1 promoter. Conversely, treatment with NG-monomethyl-L-arginine (L-NMMA, 1 mM), an inhibitor of NO synthesis, augmented cytokine induction of VCAM-1 and ICAM-1 mRNA accumulation. By gel mobility shift analysis, DETA-NO inhibited TNF-alpha activation of DNA binding protein activity to the VCAM-1 NF-kappa B like binding sites. Peroxy-fatty acids such as 13-hydroperoxydodecanoeic acid (linoleyl hydroperoxide) may serve as an intracellular signal for NF-kappa B activation. Using thin layer chromatography, DETA-NO (100 microM) suppressed formation of this metabolite, suggesting that DETA-NO modifies the reactivity of oxygen intermediates in the vascular endothelium. Through this mechanism, NO may function as an immunomodulator of the vessel wall and thus mediate inflammatory events involved in the pathogenesis of atherosclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the "adult respiratory distress syndrome," and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of nitric oxide (NO) in the pathogenesis of influenza virus-induced pneumonia in mice was investigated. Experimental influenza virus pneumonia was produced with influenza virus A/Kumamoto/Y5/67(H2N2). Both the enzyme activity of NO synthase (NOS) and mRNA expression of the inducible NOS were greatly increased in the mouse lungs; increases were mediated by interferon gamma. Excessive production of NO in the virus-infected lung was studied further by using electron spin resonance (ESR) spectroscopy. In vivo spin trapping with dithiocarbamate-iron complexes indicated that a significant amount of NO was generated in the virus-infected lung. Furthermore, an NO-hemoglobin ESR signal appeared in the virus-infected lung, and formation of NO-hemoglobin was significantly increased by treatment with superoxide dismutase and was inhibited by N(omega)-monomethyl-L-arginine (L-NMMA) administration. Immunohistochemistry with a specific anti-nitrotyrosine antibody showed intense staining of alveolar phagocytic cells such as macrophages and neutrophils and of intraalveolar exudate in the virus-infected lung. These results strongly suggest formation of peroxynitrite in the lung through the reaction of NO with O2-, which is generated by alveolar phagocytic cells and xanthine oxidase. In addition, administration of L-NMMA resulted in significant improvement in the survival rate of virus-infected mice without appreciable suppression of their antiviral defenses. On the basis of these data, we conclude that NO together with O2- which forms more reactive peroxynitrite may be the most important pathogenic factors in influenza virus-induced pneumonia in mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The L-arginine:nitric oxide (NO) pathway is believed to exert many of its physiological effects via stimulation of the soluble guanylyl cyclase (SGC); however, the lack of a selective inhibitor of this enzyme has prevented conclusive demonstration of this mechanism of action. We have found that the compound 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) inhibits the elevation of cGMP induced by the NO donor S-nitroso-DL-penicillamine in human platelets and rat vascular smooth muscle (IC50 = 10-60 nM and <10 nM, respectively) and that this is accompanied by prevention of the platelet inhibitory and vasodilator actions of NO donors. ODQ also inhibited the antiaggregatory action of NO generated by the platelets but did not affect the action of prostacyclin or that of a cGMP mimetic. In addition, ODQ inhibited the vasodilator actions of endogenously released NO and of NO generated after induction of NO synthase in vascular preparations. It did not, however, affect the increase in vascular smooth muscle cGMP or the dilatation induced by atrial natriuretic factor. ODQ had no effect on NO synthase activity, nor did it react with NO. It did, however, potently (IC50 approximately 10 nM) inhibit the activity of the SGC in cytosol obtained from crude extract of rat aortic smooth muscle. Thus ODQ prevents the actions of NO on platelets and vascular smooth muscle through its potent inhibitory effect on the SGC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide synthases (NOSs) require tetrahydrobiopterin (BH4) for dimerization and NO production. Mutation analysis of mouse inducible NOS (iNOS; NOS2) identified Gly-450 and Ala-453 as critical for NO production, dimer formation, and BH4 binding. Substitutions at five neighboring positions were tolerated, and normal binding of heme, calmodulin, and NADPH militated against major distortions affecting the NH2-terminal portion, midzone, or COOH terminus of the inactive mutants. Direct involvement of residues 450 and 453 in the binding of BH4 is supported by the striking homology of residues 448-480 to a region extensively shared by the three BH4-utilizing aromatic amino acid hydroxylases and is consistent with the conservation of these residues among all 10 reported NOS sequences, including mammalian NOSs 1, 2, and 3, as well as avian and insect NOSs. Altered binding of BH4 and/or L-arginine may explain how the addition of a single methyl group to the side chain of residue 450 or the addition of three methylenes to residue 453 can each abolish an enzymatic activity that reflects the concerted function of 1143 other residues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous research indicates that norepinephrine and dopamine stimulate release of luteinizing hormone (LH)-releasing hormone (LHRH), which then reaches the adenohypophysis via the hypophyseal portal vessels to release LH. Norepinephrine exerts its effect via alpha 1-adrenergic receptors, which stimulate the release of nitric oxide (NO) from nitricoxidergic (NOergic) neurons in the medial basal hypothalamus (MBH). The NO activates guanylate cyclase and cyclooxygenase, thereby inducing release of LHRH into the hypophyseal portal vessels. We tested the hypothesis that these two catecholamines modulate NO release by local feedback. MBH explants were incubated in the presence of sodium nitroprusside (NP), a releaser of NO, and the effect on release of catecholamines was determined. NP inhibited release of norepinephrine. Basal release was increased by incubation of the tissue with the NO scavenger hemoglobin (20 micrograms/ml). Hemoglobin also blocked the inhibitory effect of NP. In the presence of high-potassium (40 mM) medium to depolarize cell membranes, norepinephrine release was increased by a factor of 3, and this was significantly inhibited by NP. Hemoglobin again produced a further increase in norepinephrine release and also blocked the action of NP. When constitutive NO synthase was inhibited by the competitive inhibitor NG-monomethyl-L-arginine (NMMA) at 300 microM, basal release of norepinephrine was increased, as was potassium-evoked release, and this was associated in the latter instance with a decrease in tissue concentration, presumably because synthesis did not keep up with the increased release in the presence of NMMA. The results were very similar with dopamine, except that reduction of potassium-evoked dopamine release by NP was not significant. However, the increase following incubation with hemoglobin was significant, and hemoglobin, when incubated with NP, caused a significant elevation in dopamine release above that with NP alone. In this case, NP increased tissue concentration of dopamine along with inhibiting release, suggesting that synthesis continued, thereby raising the tissue concentration in the face of diminished release. When the tissue was incubated with NP plus hemoglobin, which caused an increase in release above that obtained with NP alone, the tissue concentration decreased significantly compared with that in the absence of hemoglobin, indicating that, with increased release, release exceeded synthesis, causing a fall in tissue concentration. When NO synthase was blocked by NMMA, the release of dopamine, under either basal or potassium-evoked conditions, was increased. Again, in the latter instance the tissue concentration declined significantly, presumably because synthesis did not match release. Therefore, the results were very similar with both catecholamines and indicate that NO acts to suppress release of both amines. Since both catecholamines activate the release of LHRH, the inhibition of their release by NO serves as an ultra-short-loop negative feedback by which NO inhibits the release of the catecholamines, thereby reducing the activation of the NOergic neurons and decreasing the release of LHRH. This may be an important means for terminating the pulses of release of LHRH, which generate the pulsatile release of LH that stimulates gonadal function in both male and female mammals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitric oxide (NO) is an intercellular messenger involved with various aspects of mammalian physiology ranging from vasodilation and macrophage cytotoxicity to neuronal transmission. NO is synthesized from L-arginine by NO synthase (NOS). Here, we report the cloning of a Drosophila NOS gene, dNOS, located at cytological position 32B. The dNOS cDNA encodes a protein of 152 kDa, with 43% amino acid sequence identity to rat neuronal NOS. Like mammalian NOSs, DNOS protein contains putative binding sites for calmodulin, FMN, FAD, and NADPH. DNOS activity is Ca2+/calmodulin dependent when expressed in cell culture. An alternative RNA splicing pattern also exists for dNOS, which is identical to that for vertebrate neuronal NOS. These structural and functional observations demonstrate remarkable conservation of NOS between vertebrates and invertebrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of the lysosomal proteases cathepsins B and L and the calcium-dependent cytosolic protease calpain in hypoxia-induced renal proximal tubular injury was investigated. As compared to normoxic tubules, cathepsin B and L activity, evaluated by the specific fluorescent substrate benzyloxycarbonyl-L-phenylalanyl-L-arginine-7-amido-4-methylcoumarin, was not increased in hypoxic tubules or the medium used for incubation of hypoxic tubules in spite of high lactate dehydrogenase (LDH) release into the medium during hypoxia. These data in rat proximal tubules suggest that cathepsins are not released from lysosomes and do not gain access to the medium during hypoxia. An assay for calpain activity in isolated proximal tubules using the fluorescent substrate N-succinyl-Leu-Tyr-7-amido-4-methylcoumarin was developed. The calcium ionophore ionomycin induced a dose-dependent increase in calpain activity. This increase in calpain activity occurred prior to cell membrane damage as assessed by LDH release. Tubular calpain activity increased significantly by 7.5 min of hypoxia, before there was significant LDH release, and further increased during 20 min of hypoxia. The cysteine protease inhibitor N-benzyloxycarbonyl-Val-Phe methyl ester (CBZ) markedly decreased LDH release after 20 min of hypoxia and completely prevented the increase in calpain activity during hypoxia. The increase in calpain activity during hypoxia and the inhibitor studies with CBZ therefore supported a role for calpain as a mediator of hypoxia-induced proximal tubular injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serum IgE concentrations and the expression of the low-affinity receptor for IgE (Fc epsilon RII/CD23) are increased in cutaneous leishmaniasis or after immune challenge with Leishmania antigens. In vitro, the ligation of CD23 by IgE-anti-IgE immune complexes (IgE-IC) or by anti-CD23 monoclonal antibody (mAb) induces nitric oxide (NO) synthase and the generation of various cytokines by human monocytes/macrophages. The present study shows that IgE-IC, via CD23 binding, induce intracellular killing of Leishmania major in human monocyte-derived macrophages through the induction of the L-arginine:NO pathway. This was demonstrated by increased generation of nitrite (NO2-), the stable oxidation product of NO, and by the ability of NG-monomethyl-L-arginine to block both NO generation and parasite killing. A similar NO-dependent effect was observed with interferon gamma-treated cells. Tumor necrosis factor alpha is involved in this process, since both the induction of NO synthase and the killing of parasites caused by anti-CD23 mAb were inhibited by an anti-tumor necrosis factor alpha mAb. Treatment of noninfected CD23+ macrophages with IgE-IC provided protection against subsequent in vitro infection of these cells by Leishmania major promastigotes. Thus, IgE-IC promote killing of L. major by inducing NO synthase in human macrophages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was designed to examine the possible involvement of prostaglandins and nitric oxide (NO) in the renin stimulatory effect of angiotensin II (AngII) antagonists. To this end, plasma renin activities (PRAs) and renal renin mRNA levels were assayed in rats that were treated with the Ang-converting enzyme inhibitor ramipril or with the AngII AT1-receptor antagonist losartan. Ramipril and losartan increased PRA values from 7.5 +/- 1.6 to 86 +/- 6 and 78 +/- 22 ng of AngI per h per ml and renin mRNA levels from 112 +/- 9% to 391 +/- 20% and 317 +/- 10%, respectively. Inhibition of prostaglandin formation with indomethacin did not influence basal or ramipril-affected PRA. Basal renin mRNA levels also were unchanged by indomethacin, while increases in renin mRNA levels after ramipril treatment were slightly reduced by indomethacin. Inhibition of NO synthase by nitro-L-arginine methyl ester (L-NAME) reduced PRA values to 3.2 +/- 0.9, 34 +/- 13, and 12.1 +/- 2.7 ng of AngI per h per ml in control, ramipril-treated, and losartan-treated animals, respectively. Renin mRNA levels were reduced to 77 +/- 14% under basal conditions and ramipril- and losartan-induced increases in renin mRNA levels were completely blunted after addition of L-NAME. The AngII antagonists, furthermore, induced an upstream recruitment of renin-expressing cells in the renal afferent arterioles, which was also blunted by L-NAME. These findings suggest that renin mRNA levels are tonically increased by NO and that the action of NO is counteracted by AngII.