19 resultados para Knight, Jane D., 1804 or 1805-


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The commitment of eukaryotic cells to division normally occurs during the G1 phase of the cell cycle. In mammals D-type cyclins regulate the progression of cells through G1 and therefore are important for both proliferative and developmental controls. Plant CycDs (D-type cyclin homologs) have been identified, but their precise function during the plant cell cycle is unknown. We have isolated three tobacco (Nicotiana tabacum) CycD cyclin cDNAs: two belong to the CycD3 class (Nicta;CycD3;1 and Nicta;CycD3;2) and the third to the CycD2 class (Nicta;CycD2;1). To uncouple their cell-cycle regulation from developmental control, we have used the highly synchronizable tobacco cultivar Bright Yellow-2 in a cell-suspension culture to characterize changes in CycD transcript levels during the cell cycle. In cells re-entering the cell cycle from stationary phase, CycD3;2 was induced in G1 but subsequently remained at a constant level in synchronous cells. This expression pattern is consistent with a role for CycD3;2, similar to mammalian D-type cyclins. In contrast, CycD2;1 and CycD3;1 transcripts accumulated during mitosis in synchronous cells, a pattern of expression not normally associated with D-type cyclins. This could suggest a novel role for plant D-type cyclins during mitosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The zinc-containing d-alanyl-d-alanine (d-Ala-d-Ala) dipeptidase VanX has been detected in both Gram-positive and Gram-negative bacteria, where it appears to have adapted to at least three distinct physiological roles. In pathogenic vancomycin-resistant enterococci, vanX is part of a five-gene cluster that is switched on to reprogram cell-wall biosynthesis to produce peptidoglycan chain precursors terminating in d-alanyl-d-lactate (d-Ala-d-lactate) rather than d-Ala-d-Ala. The modified peptidoglycan exhibits a 1,000-fold decrease in affinity for vancomycin, accounting for the observed phenotypic resistance. In the glycopeptide antibiotic producers Streptomyces toyocaensis and Amylocatopsis orientalis, a vanHAX operon may have coevolved with antibiotic biosynthesis genes to provide immunity by reprogramming cell-wall termini to d-Ala-d-lactate as antibiotic biosynthesis is initiated. In the Gram-negative bacterium Escherichia coli, which is never challenged by the glycopeptide antibiotics because they cannot penetrate the outer membrane permeability barrier, the vanX homologue (ddpX) is cotranscribed with a putative dipeptide transport system (ddpABCDF) in stationary phase by the transcription factor RpoS (σs). The combined action of DdpX and the permease would permit hydrolysis of d-Ala-d-Ala transported back into the cytoplasm from the periplasm as cell-wall crosslinks are refashioned. The d-Ala product could then be oxidized as an energy source for cell survival under starvation conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacterial and mammalian mismatch repair systems have been implicated in the cellular response to certain types of DNA damage, and genetic defects in this pathway are known to confer resistance to the cytotoxic effects of DNA-methylating agents. Such observations suggest that in addition to their ability to recognize DNA base-pairing errors, members of the MutS family may also respond to genetic lesions produced by DNA damage. We show that the human mismatch recognition activity MutSalpha recognizes several types of DNA lesion including the 1,2-intrastrand d(GpG) crosslink produced by cis-diamminedichloroplatinum(II), as well as base pairs between O6-methylguanine and thymine or cytosine, or between O4-methylthymine and adenine. However, the protein fails to recognize 1,3-intrastrand adduct produced by trans-diamminedichloroplatinum(II) at a d(GpTpG) sequence. These observations imply direct involvement of the mismatch repair system in the cytotoxic effects of DNA-methylating agents and suggest that recognition of 1,2-intrastrand cis-diamminedichloroplatinum(II) adducts by MutSalpha may be involved in the cytotoxic action of this chemotherapeutic agent.