67 resultados para K-Functional
Resumo:
Phosphorylation of the α-subunit of Na+,K+-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K+-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K+-ATPase α-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the α-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat α-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive 86Rb uptake in opossum kidney cells expressing mutant rat α1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive 86Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K+-ATPase α-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT.
Resumo:
Recent work has suggested that the chromosomally encoded TetA(L) transporter of Bacillus subtilis, for which no physiological function had been shown earlier, not only confers resistance to low concentrations of tetracycline but is also a multifunctional antiporter protein that has dominant roles in both Na+- and K+-dependent pH homeostasis and in Na+ resistance during growth at alkaline pH. To rigorously test this hypothesis, TetA(L) has been purified with a hexahistidine tag at its C terminus and reconstituted into proteoliposomes. The TetA(L)–hexahistidine proteoliposomes exhibit high activities of tetracycline–cobalt/H+, Na+/H+, and K+/H+ antiport in an assay in which an outwardly directed proton gradient is artificially imposed and solute uptake is monitored. Tetracycline uptake depends on the presence of cobalt and vice versa, with the cosubstrates being transported in a 1:1 ratio. Evidence for the electrogenicity of both tetracycline–cobalt/H+ and Na+/H+ antiports is presented. K+ and Li+ inhibit Na+ uptake, but there is little cross-inhibition between Na+ and tetracycline–cobalt uptake activities. The results strongly support the conclusion that TetA(L) is a multifunctional antiporter. They expand the roster of such porters to encompass one with a complex organic substrate and monovalent cation substrates that may have distinct binding domains, and provide the first functional reconstitution of a member of the 14-transmembrane segment transporter family.
Resumo:
The pore-forming α subunit of large conductance voltage- and Ca2+-sensitive K (MaxiK) channels is regulated by a β subunit that has two membrane-spanning regions separated by an extracellular loop. To investigate the structural determinants in the pore-forming α subunit necessary for β-subunit modulation, we made chimeric constructs between a human MaxiK channel and the Drosophila homologue, which we show is insensitive to β-subunit modulation, and analyzed the topology of the α subunit. A comparison of multiple sequence alignments with hydrophobicity plots revealed that MaxiK channel α subunits have a unique hydrophobic segment (S0) at the N terminus. This segment is in addition to the six putative transmembrane segments (S1–S6) usually found in voltage-dependent ion channels. The transmembrane nature of this unique S0 region was demonstrated by in vitro translation experiments. Moreover, normal functional expression of signal sequence fusions and in vitro N-linked glycosylation experiments indicate that S0 leads to an exoplasmic N terminus. Therefore, we propose a new model where MaxiK channels have a seventh transmembrane segment at the N terminus (S0). Chimeric exchange of 41 N-terminal amino acids, including S0, from the human MaxiK channel to the Drosophila homologue transfers β-subunit regulation to the otherwise unresponsive Drosophila channel. Both the unique S0 region and the exoplasmic N terminus are necessary for this gain of function.
Resumo:
Activation of the p53 tumor suppressor protein has been demonstrated to block cell growth by inducing either a transient cell cycle arrest or programmed cell death (apoptosis). Although evidence exists linking p53’s function as an activator of transcription to its ability to effect cell cycle arrest, the role of this activity in the induction of apoptosis remains unclear. To gain insight into the molecular mechanisms underlying p53-mediated antiproliferative pathways, a study was initiated to explore the functions of a putative p53 signaling domain. This region of the human p53 protein is localized between amino acids 61 and 94 (out of 393) and is noteworthy in that it contains five repeats of the sequence PXXP (where P represents proline and X any amino acid). This motif has been shown to play a role in signal transduction via its SH3 domain binding activity. A p53 cDNA deletion mutant (ΔproAE), which lacks this entire proline-rich domain (deleted for amino acids 62–91), was created and characterized for a variety of p53 functions. The entire domain has been shown to be completely dispensable for transcriptional activation. On the other hand, this deletion of the p53 proline-rich domain impairs p53’s ability to suppress tumor cell growth in culture. Amino acid substitution mutations at residues 22 and 23 of p53 (eliminates transcriptional activity) also impair p53-mediated inhibition of cell growth in culture. Unlike wild-type p53, the ΔproAE mutant cDNA can be stably expressed in tumor derived cell lines with few immediate detrimental effects. These cells express physiologic levels of p53 protein that are induced normally in response to DNA damage, indicating that removal of the proline-rich domain does not disrupt p53’s upstream regulation by DNA damage. These data indicate that, in addition to the transcriptional activation domain, the p53 proline-rich domain plays a critical role in the transmission of antiproliferative signals downstream of the p53 protein and may link p53 to a direct signal transduction pathway.
Resumo:
The AG dinucleotide at the 3′ splice sites of metazoan nuclear pre-mRNAs plays a critical role in catalytic step II of the splicing reaction. Previous studies have shown that replacement of the guanine by adenine in the AG (AG → GG) inhibits this step. We find that the second step was even more severely inhibited by cytosine (AG → CG) or uracil (AG → UG) substitutions at this position. By contrast, a relatively moderate inhibition was observed with a hypoxanthine substitution (AG → HG). When adenine was replaced by a purine base (AG → PG) or by 7-deazaadenine (AG → c7AG), little effect on the second step was observed, suggesting that the 6-NH2 and N7 groups do not play a critical role in adenine recognition. Finally, replacement of adenine by 2-aminopurine (AG → 2-APG) had no effect on the second step. Taken together, our results suggest that the N1 group of adenine functions as an essential determinant in adenine recognition during the second step of pre-mRNA splicing.
Resumo:
γ-Hydroxybutyrate (GHB), an anesthetic adjuvant analog of γ-aminobutyrate (GABA), depresses cell excitability in hippocampal neurons by inducing hyperpolarization through the activation of a prominent inwardly rectifying K+ (Kir3) conductance. These GABA type B (GABAB)-like effects are clearly shown at high concentrations of GHB corresponding to blood levels usually reached during anesthesia and are mimicked by the GABAB agonist baclofen. Recent studies of native GABAB receptors (GABABRs) have favored the concept that GHB is also a selective agonist. Furthermore, cloning has demonstrated that GABABRs assemble heteromeric complexes from the GABABR1 and GABABR2 subtypes and that these assemblies are activated by GHB. The surprisingly high tissue content, together with anti-ischemic and protective effects of GHB in the heart, raises the question of a possible influence of GABAB agonists on excitable cardiac cells. In the present study, we provide electrophysiological evidence that GHB activates an inwardly rectifying K+ current in rat ventricular myocytes. This effect is mimicked by baclofen, reversibly inhibited by GABAB antagonists, and prevented by pertussis toxin pretreatment. Both GABABR1 and GABABR2 are detected in cardiomyocytes by Western blotting and are shown to coimmunoprecipitate. Laser scanning confocal microscopy discloses an even distribution of the two receptors in the sarcolemma and along the transverse tubular system. Hence, we conclude that GABABRs are distributed not only in neuronal tissues but also in the heart, where they can be activated and induce electrophysiological alterations through G-protein-coupled inward rectifier potassium channels.
Resumo:
We previously have demonstrated that the colonic P-ATPase α subunit cDNA encodes an H,K-ATPase when expressed in Xenopus laevis oocytes. Besides its high level of amino acid homology (75%) with the Na,K-ATPase, the colonic H,K-ATPase also shares a common pharmacological profile with Na,K-ATPase, because both are ouabain-sensitive and Sch 28080-insensitive. These features raise the possibility that an unrecognized property of the colonic H,K-ATPase would be Na+ translocation. To test this hypothesis, ion-selective microelectrodes were used to measure the intracellular Na+ activity of X. laevis oocytes expressing various combinations of P-ATPase subunits. The results show that expression in oocytes of the colonic H,K-ATPase affects intracellular Na+ homeostasis in a way similar to the expression of the Bufo marinus Na,K-ATPase; intracellular Na+ activity is lower in oocytes expressing the colonic H,K-ATPase or the B. marinus Na,K-ATPase than in oocytes expressing the gastric H,K-ATPase or a β subunit alone. In oocytes expressing the colonic H,K-ATPase, the decrease in intracellular Na+ activity persists when diffusive Na+ influx is enhanced by functional expression of the amiloride-sensitive epithelial Na+ channel, suggesting that the decrease is related to increased active Na+ efflux. The Na+ decrease depends on the presence of K+ in the external medium and is inhibited by 2 mM ouabain, a concentration that inhibits the colonic H,K-ATPase. These data are consistent with the hypothesis that the colonic H,K-ATPase may transport Na+, acting as an (Na,H),K-ATPase. Despite its molecular and functional characterization, the physiological role of the colonic (Na,H),K-ATPase in colonic and renal ion homeostasis remains to be elucidated.
Resumo:
The γ subunit of the Na,K-ATPase is a hydrophobic protein of approximately 10 kDa. The γ subunit was expressed in Sf-9 insect cells and Xenopus oocytes to ascertain its role in Na,K-ATPase function. Immunoblotting has shown that the γ subunit is expressed in Sf-9 cells infected with recombinant baculovirus containing the cDNA for the human γ subunit. Confocal microscopy demonstrates that the γ subunit can be delivered to the plasma membrane of Sf-9 cells independently of the other Na,K-ATPase subunits and that γ colocalizes with α1 when these proteins are coexpressed. When Sf-9 cells were coinfected with α1 and γ, antibodies to the γ subunit were able to coimmunoprecipitate the α1 subunit, suggesting that γ is able to associate with α1. The γ subunit is a member of a family of single-pass transmembrane proteins that induces ion fluxes in Xenopus oocytes. Evidence that the γ subunit is a functional component was supported by experiments showing γ-induced cation channel activity when expressed in oocytes and increases in Na+ and K+ uptake when expressed in Sf-9 cells.
Resumo:
Desaturation of coenzyme-A esters of saturated fatty acids is a common feature of sex pheromone biosynthetic pathways in the Lepidoptera. The enzymes that catalyze this step share several biochemical properties with the ubiquitous acyl-CoA Δ9-desaturases of animals and fungi, suggesting a common ancestral origin. Unlike metabolic acyl-CoA Δ9-desaturases, pheromone desaturases have evolved unusual regio- and stereoselective activities that contribute to the remarkable diversity of chemical structures used as pheromones in this large taxonomic group. In this report, we describe the isolation of a cDNA encoding a pheromone gland desaturase from the cabbage looper moth, Trichoplusia ni, a species in which all unsaturated pheromone products are produced via a Δ11Z-desaturation mechanism. The largest ORF of the ≈1,250-bp cDNA encodes a 349-aa apoprotein (PDesat-Tn Δ11Z) with a predicted molecular mass of 40,240 Da. Its hydrophobicity profile is similar overall to those of rat and yeast Δ9-desaturases, suggesting conserved transmembrane topology. A 182-aa core domain delimited by conserved histidine-rich motifs implicated in iron-binding and catalysis has 72 and 58% similarity (including conservative substitutions) to acyl-CoA Δ9Z-desaturases of rat and yeast, respectively. Northern blot analysis revealed an ≈1,250-nt PDesat-Tn Δ11Z mRNA that is consistent with the spatial and temporal distribution of Δ11-desaturase enzyme activity. Genetic transformation of a desaturase-deficient strain of the yeast Saccharomyces cerevisiae with an expression plasmid encoding PDesat-Tn Δ11Z resulted in complementation of the strain’s fatty acid auxotrophy and the production of Δ11Z-unsaturated fatty acids.
Resumo:
Mutations in either of two human presenilin genes (PS1 and PS2) cause Alzheimer’s disease. Here we describe genetic and physical interactions between Caenorhabditis elegans SEL-10, a member of the Cdc4p family of proteins, and SEL-12, a C. elegans presenilin. We show that loss of sel-10 activity can suppress the egg-laying defective phenotype associated with reducing sel-12 activity, and that SEL-10 can physically complex with SEL-12. Proteins of the Cdc4p family have been shown to target proteins for ubiquitin-mediated turnover. The functional and physical interaction between sel-10 and sel-12 therefore offers an approach to understanding how presenilin levels are normally regulated.
Resumo:
Large conductance voltage- and Ca2+-dependent K+ (MaxiK) channels show sequence similarities to voltage-gated ion channels. They have a homologous S1-S6 region, but are unique at the N and C termini. At the C terminus, MaxiK channels have four additional hydrophobic regions (S7-S10) of unknown topology. At the N terminus, we have recently proposed a new model where MaxiK channels have an additional transmembrane region (S0) that confers β subunit regulation. Using transient expression of epitope tagged MaxiK channels, in vitro translation, functional, and “in vivo” reconstitution assays, we now show that MaxiK channels have seven transmembrane segments (S0-S6) at the N terminus and a S1-S6 region that folds in a similar way as in voltage-gated ion channels. Further, our results indicate that hydrophobic segments S9-S10 in the C terminus are cytoplasmic and unequivocally demonstrate that S0 forms an additional transmembrane segment leading to an exoplasmic N terminus.
Resumo:
In most eukaryotic cells, mitochondria use the respiratory chain to produce a proton gradient, which is then harnessed for the synthesis of ATP. Recently, mitochondrial roles in regulation of apoptosis have been discovered in many cell types. Eosinophils (Eos) die by apoptosis, but the presence and function of mitochondria in Eos are unknown. This study found that Eos contain mitochondria in small numbers, as shown by labeling with membrane potential-sensitive dyes and in situ PCR for a mitochondrial gene. Eos generate mitochondrial membrane potential from hydrolysis of ATP rather than from respiration, as shown by mitochondrial respiratory inhibitors and mitochondrial uncouplers. The mitochondria provide insignificant respiration but can induce apoptosis, as shown by using the mitochondrial F1F0-ATPase inhibitor oligomycin and translocation of cytochrome c. Thus during differentiation of Eos, although respiration is lost, the other central role of mitochondria, the induction of apoptosis, is retained.
Resumo:
Missense mutations within the central DNA binding region of p53 are the most prevalent mutations found in human cancer. Numerous studies indicate that ‘hot-spot’ p53 mutants (which comprise ∼30% of human p53 gene mutations) are largely devoid of transcriptional activity. However, a growing body of evidence indicates that some non-hot-spot p53 mutants retain some degree of transcriptional activity in vivo, particularly against strong p53 binding sites. We have modified a previously described yeast-based p53 functional assay to readily identify such partial loss of function p53 mutants. We demonstrate the utility of this modified p53 functional assay using a diverse panel of p53 mutants.
Resumo:
Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1 000 000 hits from 462 500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk.
Resumo:
The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an α- and β-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin–mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and β1-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase β1-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin–mediated cell-cell adhesion requires the Na,K-ATPase β-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the β1-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells.